

Precision Targeting for Maximizing Pull-Through by Identification of High Propensity Targets

Presented by: Ankit Chhabra

Agenda

- Traditional Pull-Through Targeting
- Pitfalls for Traditional PT Targeting
- Solution Framework
- ML Modeling Approach
- Business Outcomes
- Additional applications of this modeling approach

Traditional Pull-Through Targeting

Conventional Analytics

Opportunity Assessment to identify important Win Targets

Pitfalls of Traditional Pull-Through Targeting

- Limited focus on identifying key business drivers during assessment of the market opportunity
- Lack of alignment between short- and long-term goals for the brand
- Tactics and activities are typically focused on achieving short-term sales goals
- Often implemented in isolation from other marketing efforts which can lead to a fragmented and ineffective approach to marketing the product
- Typically focused on plan specific targeted physicians, neglecting other high opportunity customers

Objective – Identify WHO will write NBRx post win.

A large pharma client was going through a pivotal Managed Care win. Engaged CustomerInsights.AI to create a high precision relevant target list of HCPs through machine learning, to increase activation rates and market share

- Identification of new writers by considering NBRx Activated HCPs as positives and Non-Activated HCPs as Unlabeled based on a semi-supervised ML technique
- Key drivers influencing the New NBRx writers will be studied based on an event-driven modelling approach (event is HCP writer NBRx post win)
- Profiling predicted writers based on pre & post win writing behavior, promotional activity (call plan) and demographics using an ML based unsupervised clustering analysis

Deployment of the framework perform monthly model refinements and track performance

ATA

Solution Framework

Master Dataset Overview

PHARMAGEUTICAL MANAGEMEN

Positive and Unlabeled Definitions

Two-step modelling approach A combination of one-class and binary class ML Algorithms

PU Model

PU Learning helps define **Reliable Negatives**, which can be used to build binary classifier

Predicted Positives HCPs like Post win NBRx writer

Reliable Negatives – *HCPs* significantly different from positive

Binary Classification Model

Binary Classifiers such as RF, XGB and NN will be modelled based on Positives & Reliable Negatives

Performance evaluation of the model based on Train & Test sets

Real time validation of prediction by using validation time frame

High Potential Targets

HCPs predicted from the unlabeled universe

Post Model Exploration on Predicted list of Targets

Segmentation & Opportunity assessment

9

Model results across iterations

Model Tuning Objective: Precision was the primary performance metric in focus during the hyper parameter tuning process of the models.

Model Iteration results (Post Deployment)

- High Propensity (HP) methodology is designed to identify early writers real-time.
- ✓ 95% of cumulative HP writers matched actual writers.
- ✓ 76% of cumulative HP writers matched within subsequent 4-weeks (monthly update).

Total
Predicted
HCPsTotal
Predicted
Writers%
Conversion%
Capture6,7535,60482.9%95.5%

Resulted in much higher activation of targeted writers with relevant access content

12

Leading to high share vs. traditional methods

Additional Applications of similar modeling approach

	Q	Finding the right patients	We have applied similar approach to identify potential patients who are likely to start a particular therapy based on their Diagnosis, Procedure and Rx history
	<u>~~</u>	Expanding it to Formulary Loss	The same framework was later applied to multiple contracting events including one to curtail the potential downside following a loss of favorable access
		Predicting new Writers	Not just for formulary win/loss scenarios, lookalike modelling approach is also quite useful for predictive/dynamic targeting for identifying New writers
		Identifying Specialist-like Physicians	Similar approach was considered to identify pool of similar specialist like-physicians which further increased the Target universe
		SCAL MANAGEMENT	

THANK YOU

