

PHARMACEUTICAL MANAGEMENT SCIENCE ASSOCIATION

Effectively predict patient discontinuation with machine learning/AI and opportunities for Rx switching using real time competitive market alerts

Ryan Sun, Sr. Director of Analytics at Claritas Rx

Presenting Author

Agenda

- Patient adherence challenge impacting commercial teams within biopharma today
- Diverse data sources available in Claritas data ecosystem
- Apply machine learning to predict patient discontinuation risk to support timely patient intervention
- Opportunity for Rx switching using competitive market alerts

Patient access and adherence – a challenge for manufacturers

Objective: apply machine learning to predict which patients are likely to discontinue treatment

Claritas Rx Data Ecosystem

Scalable solution for integrating fragmented data for diverse users

200+features as predictive variables

Developed across the patient treatment journey

- Optional hub, specialty medicine
- No single dominant predictor; many (weak) variables in combination needed to make a stronger model

Extracting Insights from Patient Interaction Notes

Compliant Natural Language Processing (NLP)

Unstructured notes from providers contain significant predictive value when parsed

Extract correlation factors from patient engagement notes:

- ✓ Clinical symptom identification
- ✓ Patient sentiment quantification
- ✓ Text vectorization

*Receiving and analyzing these identifiable data may have privacy considerations

Model Development Methodology

- Claritas Rx has explored a variety of ML model types for this problem
 - \checkmark (Good old-fashioned) logistic regression
 - $\checkmark\,$ Artificial neural network
 - \checkmark Support vector machine
 - $\checkmark\,$ Random forest
 - ✓ Gradient boosting decision tree (XGboost, Catboost, etc)
- The winning algorithm type: Gradient Boosting Decision Tree

Wide Net vs Targeted Approach to Interventions

- Model performance evaluation at patient level
 - Precision: TP / [TP + FP] (% of model's positive predictions turn out to be true)
 - Recall: TP / [TP + FN] (% of actual positives are predicted by the model)
- Manufacturer can decide on a probability threshold appropriate for your resources.
 - WIDE NET approach: Manufacturers with extensive patient support staff may decide to set a lower threshold of 30% (meaning any patient with a 30% or greater risk of DC will be evaluated by the manufacturer staff)
 - TARGETED approach: Manufacturers with limited staff may want to set a higher threshold of perhaps 70%

Prob. Threshold	Risk Category	Test Patient Count	Actual DC	Remain Active	True Positive	False Positive	True Negative	False Negative	Precision	Recall
70%	Very High	2,465	690	1,775	359	58	1,716	331	86%	52%
50%	High	2,465	690	1,775	483	170	1,605	207	74%	70%
30%	Medium	2,465	690	1,775	580	580	1,195	110	50%	84%

* Based on model evaluation metrics synthesized across multiple customers to protect client privacy

Positive Customer and Patient Impact

Case Study: Patient would have fallen through the cracks without our predictive model

Background

- (2021) Implemented a discontinuation prediction model for patients on a rare disease therapy, to help the manufacturer identify patients at risk.
- (Q2' 22) Patient advocate user of our model found a longtime patient that had moved into an escalated risk of discontinuation.
- Advocate did not have a relationship with the patient directly, but notified the sales rep that they may want to speak with the patient's doctor (the patient had signed a HIPAA waiver).

<u>Approach</u>

- Sales rep spoke to the doctor who had no idea that the patient stopped their medication.
- Doctor learned that while on vacation, the patient had been taken off drug by an inexperienced HCP due to a minor tolerability issue noted by the patient.

Result

- The doctor called the patient and restarted on treatment right away, resuming a therapy that had provided long term control of the patient's disease.
- From the patient advocate's point of view, this patient would have fallen through the cracks without our predictive model

New, Unique Claritas Rx Market Data

Opportunity to apply AI / ML to new data sets across brands

Significantly larger patient volumes available for predictive analytics than brand case

Novel Claritas Rx Data Set							
Daily Data Across Specialty Brands	 Traditional Rx claims have 2-8 weeks of lag from patient event to analytics availability date Claritas Rx data is on a 1–5-day lag 						
Visibility From Rx to Discontinuation	 Visibility into pre-dispense milestones Visibility into Rx abandonment and treatment discontinuation dates and reasons payer controls, out-of-pocket, and other access barriers 						
Can be Integrated with Claims for Max Breadth	 Significant (~95%) overlap between Claritas Rx specialty data and best-practice Rx claims 						

Objective: predict daily when patients will drop off *competitor* brands using novel specialty market data set

Predicting Rx Switch

Increase the "new patient funnel" by using our daily specialty data

Opportunities to apply AI/ML to new data sets across brands

- **Predict patients likely to discontinue** AI / ML can be applied to open hub specialty brands, using many weak variables in combination to predict patients likely to discontinue
- Enabling a broader set of data vs. typical models Data integration, quality, and privacy methods for structured and unstructured data enable a broader set of data to be leveraged than may be typical
- It's only the beginning- future opportunities exist to leverage new, daily specialty data across the market to better predict switch Rx opportunities

