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Introduction

PMSA Journal: Spotlighting Analytics Research

Welcome to the eighth edition of the Journal  
of the Pharmaceutical Management Science 
Association (PMSA), the official research 
publication of PMSA. 

The purpose of the Journal is to promote and 
embody the mission of the association, by:

• Raising awareness and promoting the use
of Management Science in the
pharmaceutical industry

• Fostering the sharing of ideas, challenges,
and learning to increase the overall level of
knowledge and skill in this area.

The Journal publishes manuscripts that 
advance knowledge across a wide range 
of practical issues in the application of 
analytic techniques to solve Pharmaceutical 
Management Science problems, and that 
support the professional growth of PMSA 
members. Articles cover a wide range of peer-
reviewed practice papers, research articles 
and professional briefings written by industry 
experts and academics. Articles focus on 
issues of key importance to pharmaceutical 
management science practitioners.

If you are interested in submitting content for 
future issues of the Journal, please send your 
submissions to info@pmsa.org. 

GUIDELINES FOR AUTHORS 
Summary of manuscript structure: An 
abstract should be included, comprising 
approximately 150 words. Six key words are 
also required. All articles and papers should 
be accompanied by a short description of the 
author(s) (approx. 100 words). 

Industry submissions:  For practitioners 
working in the pharmaceutical industry, and the 
consultants and other supporting professionals 
working with them, the Journal offers the 
opportunity to publish leading-edge thinking to 
a targeted and relevant audience.

Industry submissions should represent 
the work of the practical application of 
management science methods or techniques 
to solving a specific pharmaceutical marketing 
analytic problem. Preference will be given to 
papers presenting original data (qualitative 
or quantitative), case studies and examples. 
Submissions that are overtly promotional are 
discouraged and will not be accepted.

Industry submissions should aim for a length 
of 3000-5000 words and should be written in 
a 3rd person, objective style. They should be 
referenced to reflect the prior work on which 
the paper is based. References should be 
presented in Vancouver format.

Academic submissions:  For academics 
studying the domains of management science in 
the pharmaceutical industry, the Journal offers 
an opportunity for early publication of research 
that is unlikely to conflict with later publication 
in higher-rated academic journals.

Academic submissions should represent 
original empirical research or critical reviews of 
prior work that are relevant to the pharmaceutical 
management science industry. Academic papers 
are expected to balance theoretical foundations 
and rigor with relevance to a non-academic 
readership. Submissions that are not original 
or that are not relevant to the industry are 
discouraged and will not be accepted.
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Academic submissions should aim for a length 
of 3000-5000 words and should be written in 
a third person, objective style. They should be 
referenced to reflect the prior work on which 
the paper is based. References should be 
presented in Vancouver format. 

Expert Opinion Submissions:  For experts 
working in the Pharmaceutical Management 
Science area, the Journal offers the opportunity 
to publish expert opinions to a relevant audience.

Expert opinion submissions should represent original 
thinking in the areas of marketing and strategic 
management as it relates to the pharmaceutical 
industry. Expert opinions could constitute a 
review of different methods or data sources, or a 
discussion of relevant advances in the industry. 

Expert opinion submissions should aim for 
a length of 2000-3000 words and should be 
written in a third person, objective style. While 
references are not essential for expert opinion 
submissions, they are encouraged and should 
be presented in Vancouver format.

Industry, academic and expert opinion authors 
are invited to contact the editor directly if they 
wish to clarify the relevance of their submission 
to the Journal or seek guidance regarding content 
before submission. In addition, academic or 
industry authors who wish to cooperate with other 
authors are welcome to contact the editor who 
may be able to facilitate useful introductions. 

Thank you to the following reviewers 
for their assistance with this issue of the 
PMSA Journal:

George A. Chressanthis, Ph.D., Axtria

Mitch DeKoven, MHSA, IQVIA 

Adam Dubrow, Crossix

Ewa J. Kleczyk, Ph.D., Symphony Health 
Solutions

Dan Lee, DSI 

Sudhakar Mandapati, Strategic Research 
Insights, Inc.

John Qu, Ph.D., Novartis

JP Tsang, Ph.D. & MBA (INSEAD), Bayser

Editor: Nuray Yurt, Novartis
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ARTICLE 1

Key Drivers for Successful Patient Event Prediction: 
Empirical Findings on What Matters and to What Extent

Srinivas Chilukuri, Principal Data Scientist, ZS Associates and Sagar Madgi, Senior Data 
Scientist, ZS Associates

Abstract: Observational healthcare databases, such as administrative claims and electronic health records, 
present rich data sources for knowledge discovery from patient longitudinal histories. One such use case is 
the prediction of various events across the patient treatment journey, such as diagnosis and therapy initiation, 
progression or discontinuation.

If implemented well, patient event prediction models enable several applications in the commercial 
(predictive customer targeting, patient services design) and research (target patient universe determination, 
trial site selection) domains. However, owing to the richness, complexity and nuances in the data, there are 
several things to get right when it comes to model design. For instance, selection of right data set and sample 
size, length of medical history, prediction time window, modeling parameters, type of features (recency, 
frequency, sequence); and mechanism of feature generation (knowledge-driven vs. automatically generated).

In this paper, we present empirical findings on how these considerations weigh on model performance and 
downstream utility, drawing upon results from a diverse set of use cases spanning multiple therapy areas. 

Keywords: Patient Event Prediction, Machine Learning, Knowledge Features, Data-Driven Features, 
Prediction Window

aspects must come together into a coherent 
machine learning pipeline for such efforts to be 
successful. This paper aims to discuss the critical 
success factors and provide empirical guidance 
for brand/analytics leaders and data scientists 
who would be undertaking such endeavors. 

1.2 Prediction Modeling Components and 
Scope of the Paper 
A typical patient event prediction model involves 
the following key ingredients:

• Right patient data set
• Representative patient sample
• Optimal length of medical history
• Optimal prediction time window
• Exhaustive model features (hypotheses

underlying events)
• Suitable machine learning model and

corresponding hyperparameters

1. Background
1.1 Introduction and Motivation
The focus of the pharma industry is increasingly
turning to specialty products for treating niche
conditions. For the brands to succeed in this
environment, it is imperative to identify the
right patient at the right time. This necessitates
predicting patient events ahead of time,
which can then inform several downstream
applications such as clinical trial planning,
predictive customer targeting, personalized
patient assistance, etc. Traditionally, these have
been approached from a clinical perspective
(e.g. CHADS2, MELD etc.) but such scores are
not available across the spectrum of events and
so there is a need to build prediction models.

However, it is non-trivial to set up, operationalize 
and derive business value from patient event 
prediction models. This is because several distinct 
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the right balance between the two. These will be 
based on observations derived from a set of event 
prediction experiments implemented for different 
use cases and therapy areas. Our focus is not on 
understanding the causal relationships between 
input variables and outcomes but more around 
understanding how choices for a specific set of 
parameters (observation windows, variables, etc.) 
affect model performance. Specifically, we seek 
to understand how the following considerations 
weigh on performance in patient event prediction:

1. Length of medical history – What is
the right length of time window over
which a patient’s prior medical events
should be considered?

2. Prediction window – What is the
optimal time window to making predictions
so they are actionable for the end users
and address the business need at hand?

3. Feature classes and types – What kind
of features matter across use cases and
therapy areas? What is the relative
importance of features across concept
domains (diagnosis, medication,
procedure, etc.) and type (recency,
frequency, sequence, etc.) of features?

4. Mechanism of feature generation
– how does mechanism of feature

Each of these steps involve making choices 
across several potential options (see Figure 1 
for examples). This makes the whole process 
complex and time consuming.

Domain experts can hypothesize parameters 
for each step in the process that will lead to 
the best model performance; however, in most 
cases, determining these parameters is a matter of 
conjecture and presents combinatorially complex 
possibilities. Typically, multiple iterations are run 
to understand the effect of varied permutations 
and combinations of choices made in each step 
on model accuracy before finalization of the 
model. This is a time-consuming and laborious 
process, even for experts.3

Essentially, there’s a trade-off then between 
model performance and resources (time and cost) 
that can be expended on improving the model 
accuracy. The cost associated with the exploration 
is steep and may increase rapidly with number of 
combinations, without a corresponding increase 
in performance. It is critical to find the right 
balance between exploration and performance. 

To this end, this paper seeks to present empirical 
findings that can be used as reference for finding 

Figure 1: Key Steps in Setting Up a Patient Event Prediction Model
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Fig 1 - Key Steps in setting up a Patient Event Prediction Model
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2. Experimental Setup 
2.1 Prediction Use Cases and Disease Areas 
We focus on four major events occurring 
through a patient’s journey (see Figure 2) viz. 
diagnosis of a condition, treatment adoption, 
treatment progression (change in line) and 
treatment drop-off. 
 
From a disease area perspective, the experiments 
will focus on disease areas which a) are 
representative of low prevalence to high prevalence 
scenarios, and b) where event prediction models 
are relatively important for healthcare stakeholders 
such as payers, providers and pharma, given the 
burden imposed by these diseases. To this end, 
we believe the following diseases can serve as a 
good representative set (see Figure 3).

generation (clinical knowledge vs. data-
driven) weigh in on prediction accuracy?

These experiments will be conducted using a 
claims database, a de facto standard choice for 
event prediction algorithms, given their ubiquity 
across applications and higher accuracy.4,5 While 
recent literature suggests that EHR does add more 
predictive power6, exploration of impact of adding 
EHR data will be out of scope for this study, and 
will be assessed in a subsequent paper. 

In the rest of this paper, we describe the 
experimental setup and results, concluding 
with a discussion and assessment of findings 
that could be used to guide the setup of event 
prediction models in general. 

Figure 2: Use Cases Across Patient Journey

Figure 3: Disease Areas by Prevalence7-13 and Economic Burden 14,15-21
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Fig 2 – Use Cases Across Patient Journey
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features on model performance will be assessed 
for diagnosis use cases across all the above 
disease areas; these are the cases where existing 
research gives us a good baseline for building 
knowledge-driven features. This will be done for 
models built using 12-month medical history.

Figure 4 shows the typical machine learning 
pipeline for building patient event prediction 
models. The same steps have been followed in 
our experimental set up.

2.2 Data 
The experimental results in this paper are 
based on Optum’s de-identified ClinformaticsTM 
DataMart US healthcare claims database for 
NSCLC, RA and CHF during the time period 
2012-2018. 
 

•	 Oncology – Non-small cell lung cancer 
(NSCLC)

•	 Immunology – Rheumatoid arthritis (RA)
•	 Primary care – Chronic heart failure (CHF)

Building on the above choice of use cases and 
disease areas, experiments will be conducted 
across the set of event prediction models listed 
in Table 1.  

The effect of varying length of medical history 
will be tested for all the event prediction models 
listed above, as it is varied from 6-36 months. 
The impact of varying prediction window (from 
1 month to 6 months) will be tested for models 
built with 12-month medical history. 

The impact of knowledge-driven vs. data-driven 

Table 1: List of Disease Areas and Use Cases for Experimentation

Prediction Use
Case

Oncology
(NSCLC)

Immunology
(RA)

Primary Care
(CHF)

Identify patients who are likely to

Disease
Diagnosis

be diagnosed with metastatic 
NSCLC be diagnosed with RA be diagnosed with CHF

Treatment Adoption adopt an 
EGFR drug

adopt an 
anti-TNF drug

adopt an 
ACE-inhibitor drug

Treatment Change
(Line Switch)

switch to 
2nd line

switch to 
2nd line biologic

switch to 
2nd line

Treatment Drop-off drop off from an 
EGFR drug therapy

drop off from an 
anti-TNF therapy

drop off from an 
ACE-inhibitor therapy

Figure 4: Typical Patient Event Predict Model Development Pipeline
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Fig 4 – Typical Patient Event Predict Model Development Pipeline
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2.5 Model Building 
Labeled data, along with features, will be split into 
train and test sets in a 70:30 ratio. XGBoost, a 
state-of-the-art machine learning model, will be 
utilized for model training. We prefer XGBoost 
over more complex models such as Artificial Neural 
Networks (ANN) given our focus on explainability 
in addition to prediction performance. Appropriate 
hyperparameter tuning will be performed to 
ensure optimal learning. Additional details 
around the models are available in the appendix. 
 
2.6 Model Evaluation 
The models will be validated on test dataset, 
defined in the previous phase. The area under 
the receiver operating curve (AUC) will be used 
for assessing the performance of models across 
different scenarios of medical history, prediction 
window and mechanism of feature generation. 
See Figure 6.

In general, the higher the AUC the better a 
model performs. A random model without any 
predictive power generally results in a 50% 
AUC. On the other hand, a perfect model would 
result in a 100% AUC. While it varies by use 
case, typically AUC of 70% is considered good 
and 85% or above is considered excellent.
	
Feature importance will be assessed using the 
adjusted F-score. Additional details around 

2.3 Specifying the Prediction Problem 
The prediction problem will be generalized as 
following, i.e., given a target cohort of patients with 
certain medical history, what is the probability of 
a patient experiencing an event of interest in the 
given prediction window? The target population 
and outcomes will be defined based on a set of 
inclusion/exclusion rules (such as occurrence of 
certain diagnosis, medication, labs etc.).

Additional details around inclusion/exclusion 
criteria and sample size for each model are 
available in the appendix.
 
2.4 Feature Definition and Selection
Variables derived from demographics, 
symptoms, comorbidities, drugs, procedures, 
visits and other observations recorded prior 
to the anchor date (see Figure 5) will be used 
for feature creation across experiments. To 
enable rapid experimentation, an automated, 
intelligent feature generation and selection 
framework will be utilized for agile discovery of 
relevant features. Additional details around this 
framework are available in the appendix.

For experiments involving knowledge-driven 
features, features will be defined based on 
existing research and expert opinion.22,23,24,25 
Details around these knowledge-driven 
features are available in the supplementary 
data file (at http://www.pmsa.org/_resources/
journal/2020/ZS-KeyDrivers/KeyDrivers.xlsx). 

Figure 5: Specifying the Prediction Problem
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Fig 5 – Specifying the Prediction Problem
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across all use cases as medical history is 
varied from 6 months to 36 months. The gain, 
however, seems to be marginal after a certain 
length of history – 6 months in case of mNSCLC 
diagnosis and treatment drop-off vs. 18 months 
in other use cases. See Chart 1.

AUC, and evaluation for various scenarios, are 
available in the appendix. 
 
3. Results 
3.1 Length of Medical History
Except for treatment drop-off and mNSCLC 
diagnosis, we note a monotonic lift in AUC 

Figure 6: Area Under the Receiver Operating Curve (AUC) 

Chart 1: Prediction Performance (AUC) vs. Medical History (in Months) 

NSCLC RA CHF NSCLC RA CHF
Diagnosis 6 0.8 0.7 0.74 Adoption 6 0.8 0.8 0.7
Diagnosis 12 0.8 0.7 0.79 Adoption 12 0.8 0.8 0.7
Diagnosis 18 0.8 0.7 0.83 Adoption 18 0.8 0.8 0.7
Diagnosis 24 0.8 0.8 0.84 Adoption 24 0.9 0.8 0.7
Diagnosis 30 0.8 0.8 0.85 Adoption 30 0.9 0.8 0.8
Diagnosis 36 0.8 0.8 0.85 Adoption 36 0.9 0.8 0.8

NSCLC RA CHF NSCLC RA CHF
Adherence 6 0.7 0.7 0.7 Lines 6 0.7 0.7 0.7
Adherence 12 0.7 0.7 0.7 Lines 12 0.8 0.7 0.7
Adherence 18 0.7 0.7 0.7 Lines 18 0.8 0.7 0.7
Adherence 24 0.7 0.7 0.7 Lines 24 0.8 0.7 0.7
Adherence 30 0.7 0.7 0.7 Lines 30 0.8 0.8 0.7
Adherence 36 0.7 0.7 0.7 Lines 36 0.8 0.8 0.8
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Adherence 1 0.8 0.6 0.6 Lines 1 0.73 0.70 0.63
Adherence 2 0.7 0.5 0.6 Lines 2 0.72 0.66 0.60
Adherence 3 0.7 0.5 0.6 Lines 3 0.71 0.64 0.58
Adherence 6 0.6 0.5 0.5 Lines 6 0.70 0.61 0.55
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Fig 6 – Area under the receiver operating curve (AUC)
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Chart 2: AUC for Different Prediction Windows
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Chart 4: Time-from-Anchor Distribution of Recency Concept Domain Features

Chart 5: Time-from-Anchor Distribution of Frequency Features
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features generated from data-driven approaches 
do capture knowledge-driven features in a 
different form and they tend to be among the 
top predictors. See Chart 6. 

4. Discussion
From our investigations on event prediction
models based on patient claims data, we have
the following observations.

4.1 Length of Medical History 
For most use cases, we see that there is no 
significant gain in model performance beyond a 
certain medical history (even for the few cases of 
exceptions, the incremental gains are diminishing 
and arguably don’t justify the increased cost of 
implementation). In fact, models built using data 
from 6 to 18-months of medical history yield 
close to best performance in almost all use cases. 
The likely explanation for this is that the recent 
history of events has the highest impact on patient 
outcome event, and the impact decays as the 
window expands, leading to negligible impact of 
events past a certain date. 

Prior research done in provider settings 
corroborates our findings that recent data 
contributes more to predictive accuracy than 
more data. Chen et al26 indicated a half-life of 
four months for clinical data relevance and 
Min et al27 observe no difference in prediction 

3.2 Prediction Window 
These results indicate that AUC peaks at the 
first month across therapy areas and use cases, 
gradually declining as the window extends from 
the first month to the sixth month. The decline 
is pronounced across all cases, except for CHF 
diagnosis and treatment adoption. See Chart 2. 

3.3 Relative Importance of Features 
We note that comorbid conditions invariably 
contribute to highest feature importance 
followed by medications, across all use cases. 
The trend is slightly distinct in case of treatment 
change; comorbid conditions still contribute to 
highest feature importance across all diseases 
but are followed by financial burden features 
(for NSCLC, CHF) and symptoms (for RA). See 
Charts 3, 4, and 5.

Frequency (or occurrence of events) of 
comorbidities, medications, symptoms and 
labs contribute to highest feature importance, 
followed by recency. Financial burden metrics 
are invariably associated with metrics showing 
change across time, such as trend and averages.

3.4 Mechanism of Feature Generation 
In terms of model performance, we note that 
data-driven features significantly out-perform 
knowledge-driven features across all disease 
areas. It is interesting to note however that the 

Chart 6: Mechanism of Feature Generation
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use cases, except for treatment line change for 
NSCLC and CHF. These are closely followed 
by symptoms, labs/visits and financial burden 
metrics. The pre-ponderance of comorbidities 
and medications in driving model performance 
may have to do with the fact that these are more 
indicative of underlying disease conditions and 
thereby capture latent information more readily 
than other sets of features. 

In terms of temporal distribution, we note 
that a high proportion of features associated 
with a time component, such as frequency 
and recency, seem to be concentrated within 
a window of 1-mo to 3-mo prior to the anchor 
date, with only a minority of features spanning 
to 6-mo and in some cases 12-mo window. This 
is in line with observations from the medical 
history, wherein it was observed that history 
beyond a 6 to 12-mo window doesn’t add 
substantial incremental lift. 

4.4 Mechanism of Feature Generation 
We note that auto-extracted, data-driven features 
drive higher prediction performance (AUC – 
0.75, 0.7,0.73) vs. knowledge-driven features 
(0.521, 0.57, 0.64). The conclusions driven 
by prior research, however, are mixed on this 
topic. Min et al27 report improvement of model 
accuracy when data-driven features are added 
alongside handcrafted features, suggesting that 
while knowledge-driven features are powerful, 
data-driven features do help in improving model 
accuracy. Tran et al29, however, suggest that the 
auto-extracted disease-agnostic features from 
medical data can achieve better discriminative 
power than carefully crafted comorbidity lists.

Typically, in the feature generation phase, 
analysts tend to rely on prior clinical and disease 
knowledge to craft features and test them 
iteratively, retaining features with the highest 
predictive power. These handcrafted features aid 
in getting to a certain baseline model accuracy; 

performance on records with a one-year 
observation window or a full history.

Based on this, we recommend a 12-month 
medical history for patient event prediction 
modeling as that seems to be the sweet spot that 
enables achieving good prediction performance 
as well as eases down the data preparation and 
computational complexity.

4.2 Prediction Window 
We note that the prediction performance 
decreases as we increase the time window for 
prediction, i.e., we can predict well for the next 
1-mo, but not as well for the next 3-mos (70-80%
of 1-mo) and for 6-mo the prediction is as good
as a coin flip in most cases. This is likely because 
as the prediction window expands, we will have
less availability of predictor events which most
often occur closer to predicted event.

Prior research around diagnostic prediction 
models corroborate this. Kleiman et al28 noted 
an inverse relationship between the length of the 
prediction window and the quality of the model. 
They attribute this observation to a decrease 
in the number of patients available, smaller 
amounts of data and the importance of patients’ 
recent health state on their immediate future.

The above findings indicate that it is extremely 
important to set up models for shorter prediction 
windows rather than longer (6-mos or more). 
This would require the modelers to educate 
and set the right expectations with the business 
stakeholders, as we have often seen a desire 
from them to predict as much ahead as possible. 
However, once the trade-offs are clear, a 
mutually workable solution could be developed.

4.3 Relative Importance of Features 
Features derived from comorbidities and 
medication variables seem to play a prominent 
role in driving model performance across all 
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feature generation algorithms can generate 
a newer set of data-driven features that can 
capture their patterns more readily. 
 
5. Conclusion and Future Work 
In this paper, we have presented results from 
experiments testing the impact of medical 
history, prediction window, different features 
and mechanism of feature generation on 
prediction performance. We believe these 
provide valuable benchmarks that can be 
utilized by data scientists and analysts while 
building patient event prediction models. 

In terms of future work, we would like to 
make these conclusions more generalizable 
by expanding the experiments to cover a 
much wider range of use cases and therapy 
areas. Secondly, we would like to incorporate 
additional structured and unstructured data 
available in sources such as EHR, to assess the 
lift in predictive performance. 
 

however, incremental lift in model accuracy may 
necessitate additional features, the discovery 
of which is non-trivial given the span of feature 
space. Advances in machine learning are making 
this computationally feasible, allowing for search 
across the entire feature space (which might 
span hundreds of dimensions) and identifying 
the most relevant features, which can then be 
used for driving incremental model accuracy. 
Therefore, we recommend using a combination of 
knowledge-driven, along with auto-extracted, data 
driven features for good predictive performance.

Another key advantage afforded by data-driven 
features is their ability to handle concept 
drift.30, 31 Models built using knowledge-driven 
features are more susceptible to performance 
degradation, given that these features are 
usually static in nature, and don’t capture 
changes to underlying patterns in healthcare 
databases. In contrast, auto-extracted data-
driven features can capture these changes 
with every refresh of database, given their very 
definition. Periodic iterations of automated 

Patient Pool 
(see Table 3) 
 
Feature Discovery and Extraction 
As outlined earlier, varied feature permutations 
can be created out of the combination 
of different concept domains (diagnosis, 
procedure, medication, demographics, etc.), 
time windows and aggregators (recency, 
frequency, change, sequence, etc.). To allow for 
agile feature discovery across concept domains 
and time, an intelligent feature generation 
and selection framework will be utilized for 
experiments involving prediction window, 
medical history and mechanism of feature 
generation. The framework utilizes a unique 

CHADS2 – Score for Atrial Fibrillation Stroke 
Risk 
MELD – Model for End Stage Liver Disease  

NSCLC – Non-small cell lung cancer 
CHF – Chronic Heart Failure 
RA – Rheumatoid Arthritis 
EGFR – Epidermal growth receptor factor 
TNF – Tumor Necrosis Factor 
ROC – Receiver Operating Curve 
AUC – Area under the ROC curve

Specifying the Prediction Problem 
Inclusion/Exclusion Criteria for Cohort (see Table 2)

Details for other use cases are available in the 
supplementary data file, at www.pmsa.org/ 
_resources/journal/2020/ ZS-KeyDrivers/
KeyDrivers.xlsx.

APPENDIX: Glossary
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creation of multiple permutations and 
combinations across time.

2.	 Iterative selection and testing of these 
features via genetic algorithms across 
multitudes of generations, ensuring only 
the “fittest” features survive at the end of 
the iterations.

Model Building 
XGBoost, an optimized distributed gradient 
boosting decision tree (GBDT) Python package, 

feature construction and selection architecture, 
enabled by evolutionary algorithms, that allows 
creation and testing of an exhaustive feature set 
across combinations of different domains, time 
windows and operators. Overall, this framework 
achieves feature selection in two broad steps:

1.	 Aggregator functions (recency, frequency, 
change in frequency, slope, change in 
slope) are applied on raw features 
available in the database, allowing the 

Use Cases Metastatic NSCLC RA CHF

Diagnosis

Patient Universe: Patients with at 
least one NSCLC diagnosis

Patient Universe: Patients with at 
least one RA diagnosis

Patient Universe: Patients with at 
least one CHF diagnosis

Outcome Label 1: Patient with at least 
one metastasis diagnosis

Outcome Label 1: Patient with the first 
RA diagnosis in 2017

Outcome Label 1: Patient with the 
first CHF diagnosis in 2017

Outcome Label 0: All other patients 
with only NSCLC diagnosis

Outcome Label 0: Patient with no RA 
diagnosis till 2015

Outcome Label 0: Patient with no 
CHF diagnosis till 2015

Anchor Date: The first secondary 
diagnosis for Outcome Label 1. The 

last event (Rx / Px / Dx) for Outcome 
Label  0

Anchor Date: The first RA diagnosis 
for Outcome Label 1. The  last event 
(Rx / Px / Dx) for Outcome Label  0 

(till the end of 2015)

Anchor Date: The first CHF diagnosis 
for Outcome Label 1. The  last event (Rx 
/ Px / Dx) for Outcome Label  0 (till the 

end of 2015)

Medical history: 1, 2, 3 years (1080 
days)

Medical history: 1, 2, 3 years (1080 
days)

Medical history: 1, 2, 3 years (1080 
days)

Additional inclusion/exclusion 
criterias:

1.) Excluded patients with NSCLC 
diagnosis before 2014

2.) Excluded patients with secondary 
diagnosis before NSCLC diagnosis

Additional inclusion/exclusion 
criterias:

1.) Excluded patients with RA  
diagnosis before 2014

Additional inclusion/exclusion 
criterias:

1.) Excluded patients with CHF  
diagnosis before 2014

Table 2: Inclusion/Exclusion Criteria for Cohort

Use Cases Disease Areas

Metastatic NSCLC RA CHF

Train Test Train Test Train Test

Diagnosis 42,747 10,687 56,775 24,332 154,952 66,408

Treatment Adoption 5,956 2,553 6,481 2,778 210,234 90,100

Treatment Drop-off 1,493 641 11,673 5,004 90,830 38,927

Treatment Change (Line Progression) 3,078 770 16,681 7,150 156,006 66,860

Table 3: Patient Pool
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Model Hyperparameters 
(see Table 4) 

Model Evaluation 
Area Under the Curve (AUC) 
The area under the curve (AUC) is a widely used 
metric for assessing performance of a machine 
learning model in a classification problem. 
Essentially, it calculates the probability of 
assigning higher outcome risk to a randomly 
chosen patient with the outcome vs. without the 
outcome. It is typically generated by plotting 
the model’s True Positive Rate (TPR) against 
1-specificity. AUC is a well reported benchmark 
and doesn’t depend on probability thresholds 
making the comparison unbiased. Other 
unbiased benchmarks such as AUPRC exist but 
are not widely reported across publications. 
 
Prediction Window 
For assessment of the impact of prediction 
window on model accuracy, area under the 

is used for modeling. This model is tuned by 
optimizing parameters such as number of 
trees (n_estimators), maximum depth of the 
tree (max_depth), regularization parameters 
(lambda & alpha) and others. Training and 
test AUCs are assessed for any evidence of 
overfitting to ensure build of a stable model.

Our choice of XGBoost as model of choice is 
driven by experience. In our experience, for event 
prediction using real world data, while Recurrent 
Neural networks (RNNs) have the potential, 
XGBoost provides almost equivalent performance 
with a higher degree of interpretability.

This is corroborated by prior research like Wang et 
al3 where post investigation of different machine 
learning models for readmission prediction 
concluded that deep convolutional networks 
(CNN) and recurrent neural networks (RNN) 
barely help; the additional performance uplift 
provided by such models is not commensurate 
with the complexity added to the model. 
 

Model  
Parameters

Metastatic NSCLC RA CHF

Diagnosis Treatment  

Adoption

Treatment  

Drop-off

Treatment 

Change  

(Line Switch)

Diagnosis Treatment  

Adoption

Treatment  

Drop-off

Treatment 

Change  

(Line Switch)

Diagnosis Treatment  

Adoption

Treatment  

Drop-off

Treatment 

Change  

(Line Switch)

max_depth 3 3 3 3 3 3 3 3 3 3 3 3

learning_rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

n_estimators 100 100 100 100 500 250 100 100 800 100 100 100

verbosity 1 1 1 1 1 1 1 1 1 1 1 1

objective binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

binary: 

logistic

booster gbtree gbtree gbtree gbtree gbtree gbtree gbtree gbtree gbtree gbtree gbtree gbtree

tree_method auto auto auto auto auto auto auto auto auto auto auto auto

n_jobs 1 1 1 1 1 1 1 1 1 1 1 1

gamma 0 0 0 0 0 0 0 0 0 0 0 0

min_child_weight 1 1 1 1 1 1 1 1 1 1 1 1

max_delta_step 0 0 0 0 0 0 0 0 0 0 0 0

subsample 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

colsample_bytree 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

colsample_bylevel 0.7 0.7 0.7 0.7 0.7 1 0.7 0.7 0.7 0.7 0.7 0.7

colsample_bynode 1 1 1 1 1 1 1 1 1 1 1 1

reg_alpha 0 5 10 0 0 2 10 0 0 0 0 0

reg_lambda 1 20 30 1 1 1 10 1 1 1 1 1

scale_pos_weight 1 9 2 1 7.5 1 13 6 1 5 6.5 1

base_score 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 4: Model Hyperparameters
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to assess if a certain class of features are dominant. 
Feature importance will be assessed via 
adjusted F-score metric available from model 
outputs using data from a specific window. 
 
Mechanism of Feature Generation 
AUC metrics will be compared for models 
utilizing features from the knowledge-driven 
and data approach calculated for a 12-month 
medical history window. 
 
Model Performance 
(see Table 5)

curve (AUC) metrics will be calculated while the 
window is varied from a period of one month to 
six months in one-month length.  
 
Length of Medical History 
To understand the effect of length of considered 
medical history on the model performance, 
AUC metrics will be calculated for each model 
iteration while the medical history is varied in 
semester-length windows from a semester to a 
period of three years.  
 
Concept Domain and Types of Feature Classes 
The contribution of the class of features by concept 
domain (diagnosis, medication, co-morbidities etc.) 
and aggregator type (recency, frequency, sequence, 
etc.) will be evaluated by disease area and use case 

Use Case Medical History (in Months) Metastatic NSCLC RA CHF

Diagnosis

6 75% 73% 78%

12 76% 78% 83%

18 76% 81% 86%

24 76% 82% 87%

30 76% 82% 87%

36 77% 84% 88%

Treatment  
Adoption

6 83% 83% 72%

12 84% 83% 74%

18 84% 83% 75%

24 85% 84% 75%

30 85% 83% 79%

36 85% 84% 79%

Treatment Change  
(Line Progression)

6 75% 73% 72%

12 77% 74% 73%

18 78% 74% 73%

24 78% 75% 74%

30 79% 75% 75%

36 80% 75% 77%

Treatment Drop off

6 76% 69% 73%

12 77% 69% 73%

18 75% 70% 73%

24 76% 69% 73%

30 76% 69% 73%

36 77% 69% 73%

Table 5: Model Performance
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ARTICLE 2 
 
Maladies of Claims Data: Manifestations, Origins, 
and Cures  

JP Tsang, PhD & MBA (INSEAD), President of Bayser Consulting and Igor Rudychev, Head of 
US Digital, Data, and Innovations, AstraZeneca

Abstract: The data we work with on an everyday basis such as Patient Claims to inform business decisions is 
incomplete and punctured with holes. Left unattended, the analyst may produce insights that are somewhat 
off when not completely wrong. That’s how we get estimates of new patients starts that are way too high, a 
targeting list that leaves out important physicians or accounts, estimates of compliance and persistence that 
come in too low, and market share of our drug that bears little resemblance with reality. 

We’ll start off with a data analysis story to  provide a concrete example of the dangers of ignoring the 
shortcomings of claims data and taking the findings gleaned from the data at face value. We then follow up 
with 10 other cases where insights run amok to make sure the lead story is not dismissed as a one-off outlier. 
We then take up the next 3 sections to describe the different maladies of claims data, the etiology of these 
maladies, and prescriptions to cure these maladies. To conclude, we go back to the story we started off with 
and describe how we deployed Machine Learning to solve the problem. 

Keywords: Claims, Gaps and Holes, Incomplete Data, Fill in Missing Information, Bayesian Reasoning

finding will be used for targeting, Long Range 
Planning (LRP), and ultimately Wall Street. 

The data analysts go to work and come back 
claiming that there are actually not a whole 
lot of these CRT patients. In other words, the 
prospects for the drug are very grim. Needless 
to say Upper Management immediately 
challenge the analysis. The data analysts stand 
by their finding and offer two pieces of evidence 
to back their position. One, they used claims 
data which is the best that the industry has to 
offer. Two, they used not one but four different 
claims data sources and they all provided very 
similar answers. Then all hell breaks loose.

It turns out the data analysts were wrong. Their 
blunder was to believe the data because 4 different 
data sources pointed in the same direction. They 
should have known better: All syndicated data 
sources are afflicted with the same setback, so 
the fact that multiple data sources agree with 
each other does not mean much. 

It’s not the eye that sees but the brain. The eye 
merely captures photons and produces a messy 
and incomplete image on the retina. The brain 
inverts the image, fills in the countless gaps, 
and curates it. The end result is so good that 
we are unaware of all the work that the brain 
does to pull this off. Just the same, data sources 
merely capture data points, so let’s make sure 
we summon our brain to work its magic.

1. Introduction 
Let’s start with a story that will sound familiar 
to anyone who has been involved in generating 
insights from Claims data or has been a 
recipient of such insights.

The ask from Upper Management is simple 
and direct and it is to shed light on the number 
of patients that have undergone chemo and 
radiation, which we’ll refer to as CRT therapy. The 
rationale for the ask is that CRT patients are the 
ones who are eligible for the drug of interest. The 
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the same direction. Indeed, that they agree 
with each other cannot be used as evidence to 
support the finding of the analysts. 

Unfortunately, this CRT story is not an isolated 
case.  It is more the rule than the exception.  
Analyses that are subject to data issues range from 
patient journey to market share and from targeting 
to measurement of Impact and ROI. See Table 1 
for an illustration of how rampant the problem 
is. It lists the top 10 business metrics where the 
data analysts would report erroneous findings 
if they do not take any measure to address the 
shortcomings of the claims data.

2. Maladies of Claims Data
Claims data is afflicted with 3 types of maladies: 
Missing information, Wrong information, 
and Information that we wish were there (See 
Figure 2). Strictly speaking, the third type is not 
a malady as the information we wish to see is 
not part of Claims data. 

A. Missing Information
The first type of malady has to do with missing
information. This is information that we’d
expect to be documented in the Claims but
that is not there. Let’s go through the various
manifestations of this problem.

Here’s what’s going on. Radiation is conducted 
in the hospital and is reimbursed under 
Medicare Part A when the patient is over 
65. Hospitals use a UB-04 claim to invoice
Payers for services rendered in the hospital.
Chemotherapy is administered in the physician
office or dispensed by a pharmacy. Physicians
invoice Payers using a CMS-1500 medical claim
and Pharmacies an NCPDP pharmacy claim.

Now, it is well known that syndicated data 
sources do a very poor job capturing UB-04 
hospital claims, especially Medicare Part A, 
where the radiation is reported. By contrast, 
they do a better job capturing chemo in the 
physician office (CMS-1500) and an even better 
job when the chemo is dispensed by a pharmacy 
(NCPDP). What this means is that the odds of 
seeing radiation in Claims data is low and the 
odds of seeing both chemo and radiation lower 
still (See Figure 1).  

That’s why the data analysts found so few CRT 
patients. Actually, many of the CRT patients 
came across as chemo only patients.  Also, since 
this data capture problem issue is not specific to 
one particular syndicated data source, it makes 
sense that all 4 data sources were pointing in 

Figure 1: CRT Patients Are a Rarity in Syndicated Claims Data
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Figure 1 - CRT patients are a rarity in Syndicated Claims Data
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Type Business Metric Issue Explanation Source of 
Problem

Patient 
Journey

1

New Patient 
Starts

Patients labeled as new are 
not

A patient is deemed new when we see a 
claim for the first time and no claims in 
the look-back period. Claims prior to the 
ones we see are not in the data. 

Longitudinal 
Holes

2

Adherence - 
Compliance 
(Medication 
Possession Ratio) 
and Persistence 
(Days on Therapy)

Lower than reality Not all claims of a patient are captured, 
leading us to conclude that the patient is 
less compliant and less persistent than 
what the patient is in reality.

Longitudinal 
Holes

3

Line of Therapy 
Labeling

Out of whack This is due to two factors: (1) Missing 
claims and (2) Misrepresentation 
of combination therapies as smaller 
combinations and/or mono therapies.  

Longitudinal 
Holes & 
Differential Rx/
Mx Capture

4

Regimen Market 
Share

IV drugs are under-reported 
relative to oral drugs. Larger 
combinations are mistaken 
for smaller ones and/or mono 
therapies. 

IV drugs are missing more frequently 
than oral drugs leading us to see less of 
combination therapies that include IV 
drugs. 

Differential Rx/
Mx Capture

Market 
Share

5

Drug Market 
Share

Underestimate competitive 
market share

Our SP data captures our drug better 
than Syndicated claims data does and, 
as a result, the merged SP/Syndicated 
data captures our drug better than the 
competition.

Differential 
SP/Syndicated  
Capture Rate

6

Share by Payer Anemic Capture of Medicare 
and Over-representation of 
Commercial

Two issues: (1) Traditional Medicare 
is poorly captured because of the way 
contracting works, and (2) the Data 
Vendor fails to move Managed Medicare  
claims back under Medicare where they 
belong and leave them under Commercial.

Poor Capture 
of Medicare 
& Failure to 
Reclassify 
Managed 
Medicare under 
Medicare

Targeting

7

Targeting and 
Segmentation

Many physicians and 
accounts are missing from 
the target list.

Big swaths of Providers are missing in the 
data including Kaiser Permanente, VA, 
DoD, IDNs, etc.

Either too 
expensive for 
the data vendor 
to acquire the 
data or the data 
supplier refuses 
to sell the data to 
the data vendor.

8

Capture of 
Hospital 
Procedures

Under representation of 
Radiation, Surgeries, Stem 
Cell Transplants, and 
more generally procedures 
performed in the hospital.

First, the hospital is a poorly captured 
setting and, as a result, any procedure 
performed in the hospital. Second, 
Medicare is a poorly captured Payer.

Poor Capture 
of Hospital & 
Poor Capture of 
Medicare

Indication 9

Patient Profile by 
Indication

Patients are assigned the 
wrong indication, resulting 
at times in a biased and non-
representative sample.

Three factors come into play: (1) The 
coding system does not allow us to zero in 
on the indication of interest (e.g., PAH), 
(2) the physician is genuinely mistaken 
(misdiagnosis), and (3) the physician up-
codes to get a higher reimbursement or 
down-codes to avoid stigma.

Coding System 
not precise 
enough  &  
Provider 
Inputs wrong 
information

Lab 10

Impact/ROI of 
interventions to 
alter Rx Behavior 
of Physicians 
when Lab Results 
are available

Very  difficult to assess and 
measure

Two reasons: (1) Capture of physicians 
with lab results available for only a sliver 
of the prescribing physicians, and (2) Lab 
results come in late, oftentimes after the 
physician has decided which therapeutic 
route to follow.

Poor Capture 
of Lab results & 
Delay in receiving 
Lab results

Table 1: Business Metrics Where Claims Data May Mislead
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This impacts any analysis that pertains to the 
healthcare journey of the patient. New patients 
starts are overestimated as we do not see claims 
that took place before the ones that we see and 
they are the ones that signal the start of therapy. 
Compliance, persistence, adherence, and days 
on therapy are underestimated as measurements 
are not made on the full set of claims.  For the 
same reason, where one line of therapy ends and 
another starts is thrown off kilter.

2. Geographic Blind Spots
A second type of malady has to do with entire
geographies going dark (see Figure 4). Examples

1. Longitudinal Holes
Claims data is the most valuable commercial
data asset out there thanks to its longitudinality.
This feature allows us to follow a patient over
time and examine all the interactions the
patient had with the healthcare system as they
unfolded including drugs prescribed, visits to
physicians, diagnoses and procedures, labs
tests, hospitalizations, and the like.

The number one malady strikes at the heart of its 
longitudinality. Indeed, there are holes in the data. 
One or more interactions the patient had with the 
healthcare system go unreported (see Figure 3).

Figure 2: Three Types of Claims Maladies
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Figure 2 - Three Types of Claims Maladies
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Figure 3 - Longitudinal Holes in the Claims Data
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Claims - CMS-1500), and Hx Hospital Claims - 
UB-04). Indeed, the capture rate of Hx is much 
lower than that of Mx, and the capture rate of 
Mx is much lower than that of Rx (see Figure 5). 

This malady impacts analyses that pertain to 
combination therapies where one therapy is 
delivered in the hospital (e.g., radiation) and the 
other in the physician office or by the pharmacy 
(e.g., chemo) as in the CRT story we recounted 
earlier.  Likewise, combination therapies that 
straddle Oral and IV may not be portrayed 
accurately. In Multiple Myeloma, for instance, 
where patients get RVd (Revlimid, Velcade, and 
dexamethasone), the data may suggest that a 
significant portion of the patients do not get 
RVd but Rd instead.

include Kaiser Permanente, VA (Veteran Affairs), 
DoD (Department of Defense), large IDNs 
(Integrated Delivery Networks), and the like. 
Note: this malady is not specific to Claims data.

Impacted analyses include targeting where we 
leave out important physicians or accounts, 
incentive compensation as we are not sure if we 
are giving proper credit to reps for the activity 
that is taking place in their territories, and 
market intelligence as we are not privy to what’s 
happening in the dark spots of our data.

3. Differential Rx/Mx Capture
Another malady of Claims data stems from
the difference in capture rate between Rx
(pharmacy claims - NCPDP), Mx (Medical

Figure 4: Geographic Blind Spots in the Claims Data
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Figure 4 - Geographic Blind Spots in the Claims Data
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result or lab value which is the outcome of 
the test. The lab order appears as a CPT-4 
procedure on the CMS-1500 claim the physician 
sends to the Payer for reimbursement and this 
takes place shortly after the physician sees the 
patient. The lab value is only available after the 
test is done, which happens way after the claim 
has been sent to the Payer.

The interest in lab data is obvious. Overlaying 
lab results on top of Syndicated Claims provides 
a much sharper picture of the patient, allowing 
us to zero in on those patients that we know for 
a fact are eligible for our drug.

There are two problems though. First, there 
is a significant delay before the lab-enriched 
claims data becomes available which means 
we may not have the chance to act upon the 
information. Second, the overlap between 
lab values and claims may not be big enough, 
thereby limiting the scope of our interventions.

7. Missing Codes
Procedure codes trigger payments and as a
result will always be reported on the claim.
Diagnosis codes essentially provide context for
the reimbursement.  When it is clear that the
provider will be reimbursed, the diagnosis codes
are almost optional and that’s when they are
left out. Another instance where codes vanish
is when a more serious and urgent diagnosis
needs to be conveyed. In this case, the current
diagnosis is simply not that important anymore
and may be left out.

The mistake here is to confuse absence of 
diagnosis code with absence of condition. Just 
because a diagnosis code no longer appears in 
subsequent claims does not mean the patient is 
in remission. 

J-codes fall under the HCPCS coding system
and are used to identify drugs that are
administered in the physician office. Several
drugs may be assigned the same J-code and a

More generally, the data captures smaller 
combinations or even mono therapies instead of 
the full combination therapies, thereby clouding 
our understanding of what’s happening in the 
marketplace. 

Also, when computing market share of drugs 
in a market that has both oral and IV drugs, 
the market share of the IV drugs tends to be 
understated and that of oral drugs overstated.  

4. Differential SP/Syndicated Capture
Except in a few cases, our SP data only talks
about our drugs (no competitive drugs) and does
so extremely well under closed distribution and 
rather well under open distribution. Add hub data
to the SP data and the picture can only get better.

Syndicated Claims data, on the other hand, 
captures a more partial picture of all the drugs 
including ours, hence the differential capture of 
our drug between SP and Syndicated Claims data.

Since we see disproportionately more of our 
drug than drugs of the competition, we may be 
tempted to conclude that our market share is 
higher than what it is and in some cases that we 
are leading when we are not. 

5. Poor Capture of Medicare
The way contracting is conducted between
Data Vendors and Data Suppliers is such that
Medicare data ends up not well captured in the
Syndicated Claims data, a phenomenon that,
by the way, has given rise to Data Vendors that
specialize in reselling their own flavor of Medicare 
data from CMS ranging from more recent vintages
to better integration with other data assets.  This
throws off our picture of not only Medicare but 
of the other Payers as well. A Share by Payer
breakout is bound to overestimate Commercial
as it underestimates Medicare.

6. Poor Capture of Lab Data
Lab data comes in two flavors: lab order which
is the test that the physician orders and lab
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Sidebar  1: Impact of Up-Coding ARDS 
for Pneumonia

Instead of coding for ARDS (Acute 
Respiratory Distress Syndrome), 
physicians choose Pneumonia as the latter 
triggers a higher reimbursement. This trips 
the data analysts in two ways. First, we 
conclude that there are fewer ARDS  and 
more Pneumonia patients than there are. 
Second, we infer that ARDS patients are 
much sicker than they are, judging by their 
high utilization of ventilation. Indeed, up-
coding siphons away a good portion of the 
less severe cases of ARDS and puts them 
into Pneumonia, leaving the ARDS patient 
pool with sicker patients.

Sidebar  2:  Too Many Patients Have 
Type 1 and Type 2 Diabetes at the 
Same Time

Claims data indicate that many patients 
have a diagnosis of both type 1 and type 
2 diabetes at the same time. While this is 
possible, the number of such patients is way 
too significant to be believable.  The fix was 
developed in conjunction with HEOR and 
consists of labeling the ambiguous patients 
as type 1 when the following 2 conditions 
are met: (1) the patient has more type 
1 claims than type 2 claims, and (2) the 
patient does not take an oral metformin. 
Ideally, more conditions would have to be 
satisfied but these are the only 2 that could 
be deployed in Claims data.

2. Wrong Payers
Managed Medicare is business that Medicare
subcontracts to Commercial Payers. As a result,
the Claims data comes in to the data vendor
through the Commercial route where they need
to be moved from Commercial to Medicare.
From time to time, the data Vendor omits this

newly launched drug may in some cases have 
to wait a year or more before it gets a J-code 
of its own. In the meantime, it gets a catchall 
temporary J-code. To put it mildly, J-codes are 
not very clean.

Obviously, this makes it hard to track the 
activity of IV drugs with the same accuracy with 
which we track the activity of oral drugs where 
NDC codes is the de facto standard.

B. Wrong Information
The second type of malady is arguably worse
than the first one. Indeed, it’s not that the
information is missing, it’s there and plain wrong. 
Let’s go through the most prominent cases.

1. Wrong Codes
There are several instances where the claim
carries the wrong diagnosis code. The  most
common occurrence is when the physician
misdiagnoses the patient and enters the
wrong code. In other instances, the physician
up-codes the condition so as to get a higher
reimbursement. In yet other instances, the
physician down-codes the condition to avoid
the stigma associated with the condition. It
is not uncommon for a psychiatrist to write a
diagnosis of bipolar when the physician knows
full well it’s schizophrenia.

Whatever the rationale behind the wrong code, the 
implications may be far-reaching.  See  Sidebar 1 
for a compelling example we owe to Marc Duey, the 
CEO of Prometrics (now part of ConcertoHealth) 
that shows how up-coding ARDS (Acute 
Respiratory Distress Syndrome) can wreak havoc.

In other instances, it may be clear that the 
codes that are reported on the claims cannot 
be trusted. See Sidebar 2 for a good example 
that we owe to Vishal Chaudhary, Director of 
Advanced Analytics with Sanofi. 
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the primary and secondary payers need to be 
captured to reconstruct what happened.  The 
manufacturer may offer a coupon or a discount 
card, and when that’s the case, we need to 
understand if the OOP (out of pocket) includes or 
excludes the coupon amount (we have seen both 
cases). Also, a foundation may pitch in to alleviate 
the financial burden of the patient. If any one 
of these parties is missing or misrepresented, 
the payment amount from the Claims is off. 

The industry has known this for a long time. 
That’s why anyone that has been around for 
some time takes Claims data with a pinch of salt 
when it comes to payments and reimbursements. 

C. Information We Wish Were There
The third type of malady is strictly speaking not
one as it pertains to attributes of Claims that
we wish were there but have never been there.
These attributes were never meant to be in Claims
but would make our lives easier if they were.

The most common wished-for attributes are the 
following (see Figure 7):

1. Indication of Interest - The ICD Coding
System may not have a code specifically
for the indication of interest. Take PAH
(Pulmonary Arterial Hypertension) for
instance.  There is no diagnosis code for PAH.
There is one for PH (Pulmonary Hypertension)
but it is much broader than PAH.

2. Metastatic Status - Claims data does not
say if the cancer is metastatic or not let

crucial step and delivers Medicare claims as 
Commercial claims.

Another issue we came across is Commercial 
Claims being classified as Cash. It was clear that 
was happening since the high price tag of the 
drug puts Cash share squarely in the low single 
low digit and that was not what the Claims data 
was saying. Digging into the matter revealed 
that the physician practices in question were 
using paper claims, and the poor handwriting 
also contributed to the misclassification.

3. Lumping of Claims
Instead of sending the claim to the Payer after
each patient visit, the Physician holds onto the
claims and then sends several of them at the same
time, presumably to cut back on the hassle of
sending claims (See Figure 6). How do we know
that? Well, the dosing of the drug is several times
the maximum a human being can take. Not only
the patient does not die, the patient comes back
the following month for more.

4. Inaccurate Payment Amounts
Take the simple case where payment is split
between the Payer and the patient. Even in
that case, it may not be clear how much the
Payer actually pays as the claim reports amount
charged, not amount paid. For that we need
the EOB (Explanation of Benefit) on the remit,
which may not always be available.

Alternatively, the patient may have purchased 
supplemental insurance which means that both 

Figure 6: Claims Are Lumped and Reported as One
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(Data Usage Agreement) in place may require the 
Data Vendor not to expose certain data fields, not 
to mention the Data Vendor’s own policy which 
may require additional redaction for compliance 
with HIPAA regulations.  See Figure 8.

Data Vendors purchase data from Pharmacies, 
Payers, Clearinghouses (switches) that in 
essence move the claims from Providers to 
Payers, and also directly from Providers such 
as large physician groups and IDNs (Integrated 
Delivery Networks). See Figure 9.

First off, the same claim may come in duplicate 
copies, which the Data Vendor needs to take 
care of. Next, Manufacturers may ask SP’s 
not to share the activity of their drugs with 
others. Clearinghouses may be asked the 
same. Interestingly, they do not always follow 
through and some of the activity of the drug 
may show up in the data, a phenomenon known 
as leakage. The data analyst sees some activity 
of the drug and, if unaware of the blocking 
situation, concludes that they are seeing the 
full activity of the drug. We refer to this as the 
“illusion of completeness”, which needless to 
say may lead to unfortunate findings.  Finally, 
Payers are not subject to blocking as they need 
to see the claim to pay the Provider. This means 

alone describe the size, stage, and spread 
(TNM) of the tumor.

3. Disease Severity - Claims data provides
little information regarding severity of
illness of  a patient. This has to be inferred
with no guarantee of success.

4. Line of Therapy  - Claims data does not
indicate when a line of therapy ends and
when another starts. This has to be inferred.

3. Etiology of Maladies
Why is it that the Claims data from our 
Syndicated Data vendors have so many issues?  
It turns out that all the maladies we discussed 
originate from 3 sources: Contracting, Footprint, 
and the Capture-Transmission-Delivery process.  
Let’s take a look at each of them.

1. Contracting
Data is too expensive for data vendors to purchase 
all the data sources out there. Instead, they have
to be discerning and acquire those data sources
that lead to a representative sample. In some
cases, money is not even the issue as some will not
sell their data and Kaiser Permanente is a prime
example. Blocking from Manufacturers and SP’s 
may also punch holes in the data before it makes
its way to the Data Vendors. Finally, the DUA

Figure 7: Attributes We Wish Were in Claims 
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footprint but not the other).
2. Patient is admitted in a Hospital that is

not in the footprint.
3. Patient changes Payer and Providers of

that Payer are not in the footprint. 
4. First injection takes place in the physician

office (medical benefit) and subsequent
ones at home (pharmacy benefit).

5. Patient goes somewhere else during
winter (snowbirds).

6. Leakage of Clearinghouse is fickle.
7. Data contracts expire and are not renewed.

Another observation worth pointing out is the 
asymmetry between Rx and Mx claims.  For starters, 
Rx claims are processed under pharmacy benefit 
and Mx claims under medical benefit. Differences 
in reimbursement can be quite sizable and invite 
creative schemes to have the reimbursement 
processed under one benefit instead of the other.

that Closed Claims datasets such as Optum, 
Truven, and Pharmetrics Plus are impervious 
to blocking and as such are good yardsticks to 
compare against to gauge the extent of leakage.

2. Footprint
Footprint refers to the set of Providers the Data
Vendor receives data from. Providers that fall
outside of the Footprint are the reason for the
blind spots in the data. Now, a patient may see
a Provider that is in the Footprint and later on
a Provider that is outside of the Footprint. As
a result, the corresponding claims “flicker” in
the data in that they appear, disappear, and
reappear again. See Figure 10.

Below are common reasons for flickering:

1. Patient fills Rx’s in Pharmacies close to
home and close to work (one is in the

Figure 8: Holes in the Data Start with Contracting

Market Research & Business Analytics

Figure 8 - Holes in the Data Start with Contracting

11

Blocking from 
Manufacturers and SPs

DUA precludes exposing 
certain fields

Too expensive to buy data 
from all data suppliers

Some will not sell their data 
(e.g., Kaiser Permanente).

DUA: Data Use Agreement

What’s Reported
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Figure 9: Data Comes to Data Vendors Through Various Routes
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Figure 9 - Data comes to Data Vendors through various routes
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1. Lumping of Claims
2. Wrong ICD diagnosis codes (misdiagnosis,

up-code, down code, no code)
3. Fuzzy J-code (not the fault of the provider)
4. Name of the head of practice appears for

all transactions of the practice
5. Names on the UB-04 hospital claim may

not reflect the actual person doing the work 
– Operating, Attending, Other, and Other.

6. Units unclear (10 ml or 10 vials)

Next, the data undergoes partial redaction as it 
gets transmitted from the Provider to the Data 
Vendor. Below are common examples: 

1. Manufacturer and SP Blocking means that
big chunks of the data are no longer available

2. Redaction of Payers from the Payer field
in the data

3. Leakage from Clearinghouses creates the
illusion of completeness (discussed earlier)

From a data standpoint, Rx and Mx claims differ 
in two respects (see Figure 11). First, Rx claims 
are processed promptly and are available to the 
Data Vendor in a matter of days. Mx claims, on the 
other hand, take weeks or even months before they 
become available to the Data Vendor. Second, Rx 
suppliers are more concentrated than Mx suppliers, 
which means that for the same contracting 
effort, the Data Vendor captures a larger share 
of the Rx market than that of the Mx market, 
resulting in the Rx/Mx differential in capture.

3. Capture-Transmission-Delivery
Let’s now take a flow of goods perspective and
identify the issues that bedevil the data as it
moves along the supply chain from the supplier
to the receiver.

First off, what the Provider is capturing in the 
system may already be tainted. Here are some 
examples of what may be happening. 

Figure 10: Flickering is the Result of Patients Interacting with Providers Inside the 
Footprint and Providers Outside of the Footprint
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Figure 10 - Flickering is the result of Patients interacting with Providers inside 
the footprint and Providers outside of the footprint
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Figure 11: Differences Between Rx and Mx from a Data Standpoint
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Figure 11 - Differences between Rx and Mx from a data standpoint
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COT (Class of Trade) to physicians and 
accounts.

5. Dollar Amounts - Discounts and
chargeback are not applied, resulting in
grossly overestimated dollar amounts.

4. Prescriptions for Maladies
Let’s take a look at how our vision system works 
as this will provide context for our discussion 
on how to address the myriad of issues in claims 
data (see Figure 13). Indeed, we do not see 
with the eye but with the brain. The eye merely 
captures photons.

First off, the image that is captured on the retina 
is messy and full of gaps and, in many respects, it 
is like the data we get from the Data Vendor. 

For starters the image is inverted. To convince 
skeptics that was the case, René Descartes in 
the early 17th century placed a small screen in 
place of the retina of an excised bull’s eye. The 
audience gasped in awe when they saw that 
the image on the screen was indeed upside 
down. Also, part of the image is missing and it 
is the part that falls on the optic nerve. We all 
remember the awesome experiment where the 
marking on the paper magically disappears when 
we bring the paper close to the eye while the 
other eye is closed.  Color vision is only available 
in the dead center of the retina where most of the 

Finally, the data vendor takes possession of 
the data and creates some additional problems 
in the process of getting the data ready for 
delivery. Below are common issues that creep 
up at this stage. 

1. Patient Encryption – An encrypted patient
id has to be generated and since PII
(Personal Identifiable Information) is spotty 
at times, the encryption process makes two
errors. In the first one, a patient is given 2 
ids (e.g., women that get married and
change name and address) and in the
second one, 2 patients are assigned the
same id (relatively easy to spot).

2. Information Redaction - The DUA (Data
Usage Agreement) may preclude the
release of certain data fields. The Legal
Department of the Data Vendor may
require further redaction of certain fields
to ensure HIPAA compliance.

3. Payer Misclassification - Managed
Medicare and Managed Medicaid Claims
are inadvertently left under Commercial
when they should be reclassified under
Medicare or Medicaid. Also, the Vendor
makes wrong guesses when the situation
is unclear as in the cash share too large
example we mentioned earlier.

4. Wrong Profile Information - The Vendor
assigns the wrong address, specialty, and

Figure 12: The Capture-Transmission-Delivery Data Process 
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Figure 12 - The Capture-Transmission-Delivery Data Process 
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well known that measurements of adherence 
conducted on filtered datasets overestimate 
the actual adherence of the population they are 
supposed to represent. 

Analogy from Optics 
To get a sharp image, reduce intake. This is the 
idea behind the pinhole which harks back to the 
camera obscura (dark room), a device that was 
known by Aristotle and the Chinese in the 5th 
century BCE.  When reducing light intake, the 
smaller the hole, the better, up to a point beyond 
which the image becomes too faint for us to see.

Fix 2 - Use Projection to Make Up for 
Missing Activity 
We know from trusted sources that the sum 
total of the activity of a given geography is Y but 
our dataset falls short and only reports X. The 
idea of projection is to scale up the observed 
activity by a factor of Y/X. In actuality, other 
dynamics come into play and the scaling factor 
that we apply may not be the same for each 
observation.  

cone receptor cells are concentrated; everywhere 
else, it’s black and white.  Finally, what we have 
is two 2D images, one from each eye, not the 3D 
picture we always see. 

Indeed, it is with this less than ideal picture that 
the brain goes to work and does its magic. The end 
product is so good that we have trouble believing 
that the input is that bad. The lesson here is 
that just like the seeing brain, we may be able to 
reconstruct a much better dataset than the one 
that was handed over to us by the Data Vendor. 
There are 3 approaches that we use as an industry 
and, interestingly, they all have a counterpart in 
optics. Let’s review them one by one. 

Fix 1 - Apply Stability Rules to Reduce 
Noise in the Data 
The principle is straightforward: Apply multiple 
filters to remove noise from the dataset.  For 
instance, throw away patients that have only 
one claim of the ICD code of interest. Remove 
physicians if they are of the wrong specialty. 
While this works well in general, it does have 
the disadvantage of introducing biases. It is 

Figure 13: The Image on the Retina Is Very Messy and We Are Not Aware  
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Figure 13 - The image on the retina is very messy and we are not aware 
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Figure 14: Apply Filters to Remove Noise in the Data  
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Figure 14 - Apply Filters to remove noise in the data
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problem and it consists of leveraging SVD 
(Singular Value Decomposition), the same 
algorithm the Bellkor’s Pragmatic Chaos Group 
used as the centerpiece of their approach to 
snatch the $1 million Netflix Prize in 09.20

Analogy from Optics 
Say you are spear fishing. If you throw the 
spear right at the fish, you’ll miss it. That’s 
because refraction bends the light that comes 
from under water, creating the impression 
that everything is further away. You need to 
adjust your throw by an amount that factors in 
distance from the fish, level of water relative to 
your eyes, and refractive index of the water, so 
as to undo the effect of refraction. 

Fix 3 - Use Peripheral Information to 
Infer Presence of What’s Missing 

Consider the toy example in Figure 16.  Each 
time we see 2 red dots, we see a blue dot, so 
when we see 2 red dots and no blue dot, we 
infer that the blue dot is missing. 

Take a look at the numerical toy example in 
Figure 15. The dataset reports 50 units for 5 
physicians and 0 units for 2 physicians. Trusted 
data sources say 170 units, so we apply a 
scaling factor of 3.4 (170 divided by 50) to each 
physician and the projected sum total activity 
aligns perfectly with the trusted data sources. 

Two observations are in order. First, physicians 
now have fractional activity. How can a 
physician write 20.4 Rx’s? It’s either 20 or 21. 
By the way, you’ll see this happening all the 
time in datasets such as IQVIA’s Xponent and 
Symphony’s IDV (Integrated Data Verse). It’s 
a practice that is meant to make the numbers 
work out at the aggregate level even if it is 
at the expense of the granular level. Second, 
physicians like Dr 6 and Dr. 7 who had 0 
activity in the raw data still have 0 activity in 
the projected data. In some sense, projection 
has reduced their importance since the gap 
between Drs 6-7 and Drs 1-5 has widened. By 
the way, we found a good way to address this 

Figure 15: Scale Up the Data Points to Make Up for Missing Activity  
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Figure 15 - Scale up the data points to make up for missing activity
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Cnt Physician SF Multiplier Projected
1 Dr 1 18 3.4 61.2
2 Dr 2 12 3.4 40.8
3 Dr 3 9 3.4 30.6
4 Dr 4 6 3.4 20.4
5 Dr 5 5 3.4 17.0
6 Dr 6 0 3.4 0.0
7 Dr 7 0 3.4 0.0

Total 50 3.4 170

0 multiplied by 
any constant is 
still 0. 

Figure 16: Pattern Recognition Allow Us to Identify Missing Elements  
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Figure 16 - Pattern recognition allow us to identify missing elements
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This is the type of reasoning we employ to 
establish that the patient underwent CRT therapy 
when radiation is missing in the data. If the blue 
dot is radiation therapy, what are the red dots?  
Well, an analysis of the claims data shows that the 
red dots can be drugs such as Paclitaxel, Keytruda 
or Alimta, diagnoses such as “Encounter for 
antineoplastic radiation therapy” (Z510 ICD-10), 
and procedures such as “Radiation planning 
therapy” (77261-77263 CPT code).

Analogy from Optics 
We cannot see a black hole but we can infer 
its presence thanks to gravitational lensing. 
Gravity around the black hole is so strong that 
it bends light that passes near it. If there is a  
black hole in the line of sight between us and a 
distant galaxy, we’ll see multiple copies of the 
galaxy and if the alignment is just right a ring of 
galaxies. By the way, this is how we know that 
black holes and dark matter exist. 

Word of caution: All the fixes we discussed only 
work to some extent and several issues may persist. 
This means that we always need to be on the 
lookout and exercise judgment. See Sidebar 3 for a 
cautionary tale about seeing what’s not in the data.

Even our almighty brain that handles messy 
images so elegantly can be fooled. In Figure 17, 
it is hard to believe that the two small circles 
on the left are identical or that the jagged lines 
on the right are horizontal and parallel to each 
other. We handle these situations by having our 
reasoning override what we see. 

Sidebar 3 - Life on Mars Blunder with 
Schiaparelli and Lowell

Giovanni Schiaparelli, an Italian 
astronomer, looked up in his small telescope 
in the late 1870’s in Milan and reported 
seeing canali on Mars. Canali in Italian refer 
to either artificial or natural canals and 
were immediately taken to mean artificial 
canals, suggesting intelligent life on the red 
planet.  Yes, green little men may indeed 
be scurrying around!  Percival Lowell, a 
wealthy amateur astronomer from Boston, 
established the Lowell Observatory at 
Flagstaff, Arizona to study Mars and spent 
a good deal of his life mapping the Martian 
canal structure. Lowell knew a thing or 
two about astronomy as he predicted the 
existence of a planet beyond Neptune which 
turned out to be Pluto. Later on, Schiaparelli 
saw two sets of the canals running parallel 
to each other, which he called gemination 
(as in twins). Actually, his eyes were failing 
and he was literally seeing double after so 
many years of straining. Also, he was color 
blind, which is ironic for a man whose claims 
depend so much on his eyesight.  In truth, no 
such canals exist on Mars.

5. Machine Learning
Thanks to the explosive growth of Machine 
Learning in recent years, we now have a whole 
array of techniques to choose from to fix the 

Figure 17: Two Optical Illusions That Show We Are Being Fooled   
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Figure 17 - Two optical illusions that show we are being fooled 
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The two small circles are identical! The horizontal lines are parallel!
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issues in claims data. We’ll focus here on 
plugging missing data and leave the problem of 
fixing wrong data for another venue.

It has become clear that the major pushback 
regarding ML techniques is their black box 
nature. If it’s a neural network that is employed, 
the only explanation we get, if we can call this 
an explanation, is the weights that the back-
propagation algorithm assigns to the synapses 
between the neurons. We human beings cannot 
take a finding just like this and run with it. We 
need to understand the thought process that led 
to the conclusion, the considerations that were 
and were not taken into account, and the caveats 
associated with the finding. Only then will we do 
anything with the finding if we so choose.

The good news is not all ML techniques are black 
boxes. While they do not explain their reasoning 
as a human would, some allow us to understand 
how they arrived at the conclusion. We had great 
success with several of them and will focus here 
on Bayesian Reasoning. We’ll describe how it 
works and then how we applied it to address the 
CRT problem we described at the beginning. 

A. Bayesian Reasoning
Say you catch a glimpse of a woman with long 
dark hair at the airport. Later on as you line up 
for the men’s restroom, you notice her again 
lining up in front of you. Then it hits you: 
it’s a he, not a she. Originally, you believed 
she was a woman but in light of the restroom 
evidence, you changed your mind and you are 

now convinced it’s a man with long hair. This is 
Bayesian reasoning at work. 

Let’s plug in some numbers to get a better 
understanding of how Bayesian reasoning works. 
Let’s recap the major facts about the incident. 

1. H is the Hypothesis and it is “It’s a
woman”

2. E is the Evidence and it is “Lined up at
men’s restroom”

3. p(H) = Probability it’s a woman = 99%
4. p(E) =  Probability we see a person lining

up at the men’s restroom  = 1%
5. p(H|E) = probability it’s a woman given

the restroom evidence = ?
At this point, what we need is a way to infer 
P(H|E). For that, consider Figure 18.

What is the probability of a dart landing in the 
overlap of H and E? This is p(H  E). It is the 
probability that the dart is in E given that it is 
in H when we know it is in H. This is p(E|H). 
p(H). Since H and E are interchangeable,  it is 
also the probability that the dart is in H given 
that it is in E when we know it is in E. This is 
p(H|E). p(E). What we have then is P(H  E) 
= P(E|H).P(H) = P(H|E).P(E). Putting p(H|E) 
as the subject of the formula, we have the Bayes 
formula: 

Figure 18: Probability that the Dart Lands in the Overlap of Circles H and E   
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Fig 18 - Probability that the dart lands in the overlap of circles H and E
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At this point, we are missing only one thing 
and it is p(E|H) which is the probability that 
someone would line up at the men’s bathroom 
given it’s a woman. This is extremely rare 
(women’s restroom is broken?) and let’s say 
this happens 1 in 10,000 cases which gives us a 
probability of .0001.  

In light of the restroom evidence, the probability 
that it is a woman is less than 1 in 1000 which 
is the complete opposite of what we believed 
before, namely, that 99 out of 100 it’s a woman. 

In practice, it is more convenient to work with 
odds than with probabilities.  If the probability 
is 50%, the odds are 1. If the probability is 75%, 
the odds are 3:1 . The odds are simply the ratio 
of probability to 1 minus probability. The odds 
counterpart of the Bayes formula is obtained by 
dividing p(H|E) by p(~H|E) which gives us:

If we assume that the pieces of evidence are 
independent of each other (this is Naive Bayes), 
we can then simply multiply all likelihoods with 
the prior odds to get the posterior odds. 

Now let’s see how Bayes Reasoning can help 
us plug missing data. At this point, it does not 
matter if the missing data was left out from 
the dataset like Radiation in the CRT therapy 
example or has never been part of claims data 
to start with such as when the patient will 
discontinue therapy or change line of therapy. 

Let’s assume we are looking at the following:

1. H - the missing event did happen but was
not captured.

2. ~H - the missing event never happened

and as a result is not in the data.
3. O(H) is the odds that a patient taken at

random from the dataset will have an
event missing and not be captured. This is
established using knowledge we have on
how well or poorly the event is captured in
the claims data.

4. E - evidence that may impact our belief in H or
~H. Examples include drugs, diagnoses,
procedures, lab orders, lab results,
hospitalizations, referrals, up/down dosing, etc.

5. O(H|E) is what we are after and it is the
odds that the missing event did happen
when the Evidence is present.

Two pieces are needed to establish O(H|E). They 
are the numerators and denominators of Lik(E|H). 
The numerator is the probability of observing the 
evidence when the missing event did happen but 
was not captured. That’s p(E|H). The denominator 
is the probability of observing the evidence 
when the missing event never happened and so 
is not in the data. That’s p(E|~H).

To that end, we construct 2 cohorts of patients, 
a positive and a negative. In the positive cohort, 
the missing event did happen but was not 
captured and in the negative cohort, the missing 
event never happened. We then go through all 
the pieces of evidence we can think of and call 
out those where the frequency of occurrence of 
the evidence is high in one cohort but low in the 
other. Note that a piece of evidence that appears 
as frequently in the positive cohort as in the 
negative cohort is irrelevant as it does not alter 
our current belief in H one way or the other.

Now that we have everything we need, we can 
use the odds formulation of the Bayes formula 
to compute the posterior odds that the missing 
event did happen but was not captured. If 
the odds are greater than 1, we’ll say that the 
missing event happened but was not captured, 
otherwise that it never happened.



34

Note on Explanability 
The Bayesian reasoning is very transparent 
and it is clear how the conclusion was reached. 
Indeed, for any patient, we know what the prior 
odds of the missing event happening but not 
captured in the data are and also all the pieces 
of evidence that were flagged as relevant for that 
patient along with their respective likelihoods. 

B. Using Bayesian Reasoning to Solve
the CRT Problem

Problem 
The CRT problem, in essence, has to do with 
the fact that the claims are incomplete and as 
such prevent us from concluding that a patient 
underwent Chemo-Radiation therapy (CRT) 
when Chemo or Radiation is absent in the data. 
Indeed, absence of evidence is not evidence of 
absence. The Chemo or Radiation may or may 
not have happened. Our problem is to resolve 
the ambiguity by establishing yes or no if the 
patient actually underwent CRT therapy when 
Chemo and/or Radiation is missing. 

Approach 
Claims data carry more than Chemo and 
Radiation information regarding the patient. 
They also document diagnoses, procedures, lab 
tests, lab results, drugs, and hospitalizations 
the patient underwent. Using the Bayesian 
approach we discussed, we established which 
ones of these markers are predictive of the 

presence or absence of CRT therapy and 
quantified their likelihoods. Given a patient 
where either Chemo or Radiation is missing, 
this approach assigns a probability with which 
CRT therapy happened. 

Performance Results 
To evaluate our model, we created 4 groups of 
patients. Group 1 and 3 are made up of patients 
that are known to have undergone CRT. For 
Group 1 (494 patients), we hid the Radiation 
part and Group 3  (696 patients) the Chemo 
part. Groups 2 and 4 are made up of patients 
that have not undergone CRT. Group 2 (289 
patients) contains patients that did not undergo 
Radiation and Group 4 (300 patients) patients 
that did not undergo Chemo. 

Figure 19 displays the result of the performance 
evaluation. The model predicts with 96.8% 
accuracy that the patient underwent CRT among 
those where Radiation is missing and 97.4% 
accuracy among those where Chemo is missing.  

This approach allows us to identify 4 times 
more patients than what a direct read of the 
data suggests.

Figure 19: Performance of Bayesian Reasoning Model   
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Fig 19 - Performance of Bayesian Reasoning Model
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Chemo No Radiation Radiation No Chemo

Reality Reality
TRUE FALSE Total TRUE FALSE Total

Model
TRUE 494 25 519 

Model
TRUE 696 26 722 

FALSE - 264 264 FALSE - 274 274 
Total 494 289 783 Total 696 300 996 

Sensitivity 100.00% Sensitivity 100.00%
Precision 95.20% Precision 96.40%
F1-Score 97.50% F1-Score 98.20%
Accuracy 96.80% Accuracy 97.40%
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6. Conclusion
Below are the key takeaways.

1. Claims data is full of traps and unless you
have a good understanding of its
shortcomings, it’s very easy  to draw the
wrong conclusion.

2. The data is guilty until proven innocent.
The burden of proof sits squarely on us,
the folks that draw insights from the data,
although we may feel at times it’s clearly
the fault of the data vendor. Here’s why:
When you make a claim that turns out to

be bogus, it is you who have to do the 
explaining, not the data vendor. 

3. Be extremely cautious when you uncover
some truly remarkable insights. Use
common sense and other sources of data
to pressure-test your findings. Are you
seeing Schiaparelli’s canali and concluding
the existence of little green men?

4. ML Techniques are a great way to plug in
holes in the data. Remember the CRT
story. It’s clever ML, not more data
sources that saved the day!
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Abstract: Disease detection driven by artificial intelligence (AI) has demonstrated to be an effective tool for 
identifying undiagnosed patients with complex common as well as rare diseases. The use of these algorithms 
is driven by awareness that underdiagnosis leads to a heavy burden for patients and healthcare professionals, 
and is also a challenge for pharmaceutical companies seeking to expand the patient pool for their medications, 
whether to power clinical trials or to efficiently target healthcare providers (HCPs). However, despite 
widespread awareness and usage of this application, methodologies utilized are highly variable and learnings 
are rarely shared. In addition, the commercial application of models built for pharmaceutical companies is 
not always considered during model development stages, despite the importance of methodological decisions 
to the efficient and successful real-time implementation of AI driven diagnostics. In this paper, a cross-
functional methodological approach to AI algorithm design for undiagnosed patient detection will be detailed, 
an approach honed through the development of numerous algorithms applied to a wide-range of diseases, 
from common to ultra-rare, in diverse therapeutic areas. Methodological and technical considerations will be 
described that consider relevant aspects of clinical, analytical, and commercial environments to develop an AI 
solution that is statistically robust, clinically relevant, interpretable, and operationally tenable.
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into best practices are rarely shared. Developing 
an effective disease detection algorithm is a 
multifaceted solution involving technical, 
clinical, and operational expertise. These 
capabilities are essential in informing each step 
of study design, model development, and 
deployment. Clinical validation and 
interpretation of the model is equally important 
to the evaluation and the optimization of 
advanced AI techniques. Further, the 
implications on business operations, which are 
key to the development and real-time 
implementation of AI driven diagnostics, are 
often overlooked during model development 
and deployment phases. 
 

1.0 Introduction 
Disease detection algorithms driven by artificial 
intelligence (AI) have demonstrated to be an 
effective tool for identifying undiagnosed patients 
with underdiagnosed, un-coded, and rare 
diseases. The application of these algorithms is 
greatly influenced by challenges that patients and 
healthcare professionals face, as well as those 
encountered by pharmaceutical companies trying 
to expand the pool of candidate patients for their 
medications, whether to power clinical trials or 
to efficiently target healthcare providers (HCPs).  
 
Despite the popularity and widespread use of 
disease detection algorithms, the methodology 
design varies highly across studies and insights 
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2.1 Selecting a Dataset and Building Cohorts
Selection of the dataset is a key aspect of AI 
modeling. The dataset is important for several 
reasons, including:

•	 The identification of patients from which 
the model will learn

•	 The type and volume of predictors that 
can be leveraged

•	 The ongoing business application

Important considerations for selection include a 
balance of cost, patient coverage, and 
application (i.e. clinical, commercial, etc.). 
Adjudicated or non-adjudicated medical claims 
and electronic health records (EHR) are 
commonly used or considered datasets. 
Additional datasets that might be used to 
supplement modeling include patient registries, 
lab claims, and consumer data. 

The first and most important question to 
consider is model application and key goals for 
the modeling effort. For clinical trial 
recruitment and pharmaceutical marketing, the 
goals include broad and timely identification of 
new potential patients and their HCPs. As such, 
an open claims dataset with robust coverage of 
patients and HCPs and near real-time updates 
would be most applicable. Using closed claims 
for this application is a significant disadvantage 
given there is an extended lag time in the data. 
In contrast, for development of a clinical 

In this paper, we detail a cross-functional 
methodological approach to AI algorithm 
design for undiagnosed patient detection, 
established over several years and applied to 
various diseases, ranging from common to 
ultra-rare. We describe methodological and 
technical considerations that reflect relevant 
aspects of clinical, analytical, and commercial 
environments to develop an AI solution that is 
statistically sound, clinically relevant, 
interpretable, and operationally tenable. We will 
focus on three main areas, including: 

1.	 Application of analytical techniques that 
drive robust clinical and statistical 
validation as well as interpretability and 
insight of AI models

2.	 Inputs and techniques that foster 
development of a model that is 
appropriate and actionable for the desired 
commercial implementation

3.	 The outlook for building and utilizing 
diagnostic algorithms developed with AI 

2.0 The Process of Building a Model 
The primary and essential elements of building 
a model to predict diagnosis are consistent 
across disease states and applications. Details 
within each step may be variable, but the overall 
process can be summarized into five main steps, 
shown in Figure 1. 
 

Figure 1: The Five Main Steps in Developing an AI Model Designed for Prediction of 
Undiagnosed Disease 

Source: IQVIA illustration
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identify a validated positive cohort may be 
necessary. Several examples of more complex 
scenarios are discussed below, including:

A.	 The use of multiple claims for the disease of 
interest to increase confidence in the 
diagnosis

B.	 The use of “proxies” such as: 1) treatments 
indicated exclusively for a target disease 
state or 2) the combination of multiple 
diagnostic codes that together define a 
specific disease state

C.	 A selection period after October 2015 for 
diseases in which the single ICD-9 code is 
shared among multiple diseases, where only 
patients with a definitive and non-shared 
ICD-10 code are included as positive

D.	 The use of a supplemental data source such 
as EHR, lab, or patient registry  

 
Scenario A. The existence of a single occurrence 
of an ICD-10 in a patient’s medical history may 
not be indicative of the patient truly having the 
disease, but rather of testing for the disease. In 
these instances, criteria for a positive patient 
can be refined to the requirement of at least two 
instances of the ICD-10 code specific to the 
disease. This selection can drive a higher 
confidence of confirmatory diagnosis for positive 
patients, eliminating patients that may have been 
tested for disease but not ultimately diagnosed. 

Scenario B. In some cases, the disease of 
interest may have a non-specific ICD code, 
where the code itself is shared among diseases 
of the same family or is used for patient 
populations outside of the disease of interest. 
For example, if the model is being developed to 
predict patients with hereditary angioedema 
(HAE), a challenge that arises is that the ICD-10 
code for HAE (D84.1) is shared with other 
forms of angioedema. In this case, other proxies 
of a confirmed disease state in a patient’s 
medical history should be considered to select 
those diagnosed with only the disease of 

decision tool, the goals might include clinical 
insight or diagnostic indicators and limited 
disruption of clinician workflow. For this 
specific application, an EHR dataset would be 
more appropriate as it would mimic the 
environment in which it would be deployed.

Additional datasets, such as lab data, patient 
registries, and specific consumer data, can 
supplement modeling. These datasets serve two 
main purposes, including the identification of 
known diseased patients (e.g. through disease-
specific lab/genetic testing), and profiling of 
patient subgroups to gain insights into the 
studied patient population (e.g. through 
consumer attributes). While all datasets have 
individual value, researchers should use caution 
in considering using all datasets for the same 
model. Cost and complexity for both initial 
development and ongoing deployment 
compared to gain in model performance should 
be evaluated and balanced appropriately.  
 
2.2 Patient Cohort Design 
After selecting the appropriate dataset, the next 
critical element of disease detection modeling is 
the development of clean, validated patient 
cohorts, or the sets of patients from which the 
model will learn to differentiate disease from 
non-disease. These groups of patients are often 
referred to as positive cohort (with disease) and 
negative cohort (without disease).  
 
2.3 Selection of a Positive Cohort 
In the simplest form, positive patients can be 
selected based on defined criteria that is 
indicative of the disease of interest. For example, 
if the goal of the model is to predict patients 
diagnosed with shingles, the selection criteria 
could be defined as evidence of a claim with the 
ICD-10 diagnosis code specific to the disease 
(Herpes Zoster, B02 family of codes). However, 
selection of positive cohorts may not always be 
this straightforward, and more complex steps to 
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2.4 Selection of a Negative Cohort 
At a basic level, patients in the negative cohort 
can be selected based on the absence of evidence 
for the disease of interest. In some cases, further 
filtering of the cohort can eliminate patients who 
are ineligible to have the disease and thus would 
not serve as suitable comparators. For example, 
male patients should be excluded from a negative 
cohort for a model identifying patients with 
endometriosis, a disease of the uterus, and elderly 
patients would be inappropriate to include for a 
model focused on a pediatric disease. 

In some instances, lack of evidence for disease 
is not necessarily indicative of a patient that is 
not affected, but rather a result of limitations in 
data coverage, coding practices, or under-
diagnosis. An understanding of estimated 
prevalence of unknown or unlabeled positives, 
which could be wrongly labeled as negatives, is 
helpful in approximating potential impact on 
model performance. Negative patients are often 
selected from a random sample of the general 
population with no evidence of the disease of 
interest, and thus for modeling in rare and 
ultra-rare diseases, the existence of false negatives 
(positive patients that are not identified as such 
due to the limitations mentioned above) is 
typically negligible because of the low prevalence 
of disease. In other instances, however, such as a 
case of finding patients with common (typically 
under-coded or under-diagnosed) diseases, the 
existence of these ‘unknown positives’ wrongly 
labeled as negatives could have substantial 
implications on model development, with the 
biggest impact on potential incorrect 
measurement of model performance. 
Techniques that seek to understand or mitigate 
the impact of unlabeled positives are discussed 
in a later section.  

Cohort selection is crucial to the modeling 
process, but researchers should avoid the urge 
to overclean the cohorts, thus running the risk 

interest, and thus the cleanest sample of 
positive patients with which to train a model. 
Once again using HAE as an example, a specific 
diagnosis may be defined as patients with 
evidence of treatments indicated exclusively for 
HAE, or through evidence of a combination of 
diagnosis codes for HAE (i.e. when a patient has 
evidence of both the ICD-10 D84.1 and broad 
ICD-9 277.6, which codes for numerous disorders 
under “deficiencies of circulating enzymes”) 
along with evidence of non-specific treatments 
used for management of the disease. 

Scenario C. Many rare diseases may have a 
specific ICD code within version 10, but within 
the ICD-9 definitions shared diagnostic coding 
with a broader group of conditions. In these 
cases, a positive patient selection period can be 
limited to after October 2015, the beginning of 
ICD-10 release in the U.S., to help ensure a 
clean positive cohort. The definition of first 
instance of diagnosis for such patients, 
however, should be based on the first observed 
diagnosis code in their history, whether from 
the shared ICD-9 or exclusive ICD-10 version, 
such that the timing of the patient’s initial 
diagnosis is identified with highest confidence. 

Scenario D. Finally, a single data source may 
not always be enough to identify patients of 
interest. Situations exist in which a group of 
positive patients cannot be identified solely 
through diagnosis and treatment coding in 
claims data, such as when there is simply no 
ICD code or available proxy. In these cases, 
addition of other data sources such as EHR, 
patient registries, or lab results (e.g. genetic 
testing) may be beneficial. As an example, to 
identify a disease severity not captured in ICD 
coding, EHR data can be used to reveal patients 
with evidence from provider notes of the disease 
state of interest. These patients can then be 
linked back to claims data (or other datasets) 
for model training.  
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An example of this type of feature is the roll up 
of a set of diagnostic ICD-10 coding for 
abdominal pain. This physical manifestation is 
captured in several individual ICD-10 codes, 
each of which defines a specific region of the 
abdomen as well as the type of pain. A classical 
knowledge-driven feature would usually contain 
each of these codes “rolled-up” into one clinical 
bucket, such that the only information the 
model sees is abdominal pain, and none of the 
underlying specificity from individual clinical 
claims codes. Several mapping systems, such as 
SNOMED1,exist to align coding with clinically 
relevant roll-ups, allowing for straightforward 
assembly of interpretable knowledge-driven 
clinical features.    
 
3.2 Data-Driven Features 
To leverage additional medical history, an 
automated data-driven process can be utilized 
in conjunction with hypothesis-driven features. 
This process involves selecting features based 
on the data alone to define inputs for modeling. 
Leveraging the data to define potential predictors 
often leads to an initial assessment of thousands 
of different features. This lengthy list of features 
can then be narrowed down using a variety of 
selection techniques to a set of those that are 
most relevant. Using the data in such a way can 
reveal previously unknown predictors and is 
especially useful in disease states where there is 
limited understanding of the patient journey. 
While this process is valuable, one caveat with 
data-driven features is that they are often presented 
with substantial granularity (such as a single CPT 
or a single ICD-10 code). This granularity can 
be helpful but may also result in challenges with 
clinical interpretation of model decision making.  
 
4.0 Building a Model and Assessing 
Performance

With positive and negative patient cohorts 
selected, and a set of features built for input 

of introducing bias, reducing sample size, and 
hindering model efficacy. The introduction of 
bias is an especially critical consideration in 
study design. Main sources of bias include 
changing data coverage, seasonality, market 
events (diagnostic or procedure coding changes, 
patient pathway updates, new treatments 
introduced), and inappropriate selection criteria 
that lead to an improper positive cohort. 
Mitigation of these sources of bias reside in the 
proper selection of cohorts as outlined above as 
well as in suitable selection of a study time 
period to be utilized for model training.  
 
3.0 Appending Features (Predictor Design)  
Following development of positive and negative 
cohorts, the next step is to append potential 
predictors, or in other words, identify the 
medical history that will be used to train the 
model. The importance of developing a set of 
predictors (also called features, model inputs, 
or variables) cannot be understated. These 
inputs form the basis for how a model makes its 
decisions about patient predictions and are thus 
critical in both driving the predictions 
themselves and in gaining clinical insight from 
the model. There are two main approaches to 
predictor generation: an automated data-driven 
process, and a hypothesis, or knowledge-driven 
process. Finding a balance between the classical 
hypothesis-driven and automated data-driven 
feature generation is essential for an 
interpretable and operational model.  
 
3.1 Hypothesis (Knowledge) Driven 
Features 
Hypothesis, or knowledge-driven feature 
generation, is valuable in that it allows for 
testing of predictors considered to be clinically 
important. As such, these predictors are easy to 
interpret and simple to understand in clinical 
terms. However, despite their interpretability, 
these predictors may not capture all relevant 
aspects of medical history for a specific disease. 
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mean of precision and recall), and the area under 
the receiver operator curve (AUC) (defined as 
the integral of the model’s true positive rate as a 
function of its false positive rate). 

The F1 and AUC scores examine model 
performance as a single number, making them 
popular choices for performance ranking and 
hyperparameter optimization. Their definitions, 
however, average and integrate over competing 
terms in the confusion matrix – e.g. the true 
positive rate and false positive rate – rendering 
them unsuitable for nuanced applications where 
a certain region of the precision-recall or 
receiver operating curve is of particular interest, 
as is most often the case for disease detection 
applications. In these situations, a more flexible 
variant of the F1 score known as the generalized 
Fβ score can be used to quantify model 
performance, biased to higher or lower recall 
levels by tuning the value of the parameter β. 
This value is best suited for instances where 
there is significant imbalance between the 
positive and negative patient populations. 
 

into the modeling process, binary classification 
is the intuitive solution to develop diagnostic 
algorithms. Several modeling techniques are 
typically employed for model training, including 
logistic regression, random forest, gradient 
boosting, and neural networks, all of which can 
work quite well depending on the circumstances. 
With that said, decision tree algorithms based on 
gradient boosting (such as XGBoost)2 are found 
to work particularly well for the domain of 
disease detection (See Figure 2). 
 
4.1 Model Validation 
Validation of the model’s performance is critical 
for assessing commercial, clinical, or other 
applicability. This process helps define how 
effectively a model can identify undiagnosed 
patients in a real-world commercial setting as 
well as try to understand a model’s complex 
decision-making process. There are several 
ways to approach performance measurement, 
including the precision-recall (PR) curve alluded 
to above, the F1 score (equal to the harmonic 

Figure 2: Comparison of Model Performance for Several Techniques 

Comparison of logistic regression, random forest, and XGBoost for a model trained to predict undiagnosed patients with 
an ultra-rare neuromuscular disorder. XGBoost outperforms the other techniques for detection of this disease. Precision: 
proportion of positive patients correctly identified by the model; Recall: proportion of positives identified by the model 
out of all known positives. Source: IQVIA case study. 1
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neuromuscular disorder, demonstrates the 
importance of utilizing a representative ratio for 
model evaluation. Take, for instance, the point 
on the curve at 10% recall. When the precision of 
the model is evaluated on a 1:1 ratio it is nearly 
100%. Even at a 1:1,000 ratio the precision is 
approximately 95%. This precision is deceptively 
high or artificially inflated as the true precision 
is 28% when evaluated on a ratio that best 
approximates real-world disease prevalence.

The definition of good performance is thus 
dependent on the specific modeling exercise 
and disease of interest. While the actual value of 
precision may be low (see Figure 3), the relative 
increase in performance relative to selecting 
patients at random, a measurement that can be 
based on disease prevalence, is a more apt way 
to assess the function of a model.

4.3 Considerations for Model Training 
with the Expectation of False Negatives 
In situations where there is the expectation of 
an unclean negative cohort, or in other words 
that the proportion of false negatives (also 
called unlabeled positives) will be high, an 
approach known as positive and unlabeled (PU) 
learning can help.4 An example of a situation in 
which this type of AI learning could be 
appropriate is a disease in which a significant 
portion of the diagnosed population are un-
coded in claims data. These situations may arise 
due to stigma associated with the disease, or in 
the absence of specific treatments and thus 
limited incentive or awareness for HCPs to 
submit a claim for the disease itself. This issue 
may impede the model’s ability to learn and 
differentiate positive from negative, and thus 
adversely affect the patterns and profiles that 
the model leverages when applied to a real-
world dataset for undiagnosed patient 
identification. 

Here the presence of unlabeled/unknown 
positives in the claims data can be inferred by 

4.2 Evaluation of a Precision Recall Curve 
While the Fβ and AUC measures can be useful 
for ranking and optimization through 
measurement of overall performance, they 
contain only a fraction of the information 
encoded in the full PR curve. The PR 
curve is typically the most valuable metric as it 
provides an intuitive assessment of model 
performance as well as highly actionable 
outputs. In addition, the curve allows for an 
adjustable threshold to suit multiple 
commercial and clinical deployment initiatives. 
Identifying a recall threshold at which a patient 
is identified as high likelihood (with highest 
levels of precision) versus a patient that is lower 
likelihood (lower levels of precision) allows for 
targeted differentiation of predicted patient 
candidates. Examples of applications include 
choosing a personal vs. non-personal promotion 
in a commercial setting or advocating for an 
expensive diagnostic test versus less costly 
patient monitoring in a clinical setting. 

Reviewing a PR curve is highly useful in 
understanding a model’s real-world application 
through quantification of potential performance 
when implemented. However, the PR curve 
assessment must be used appropriately. 
Specifically, the curve must be calculated using a 
representative ratio of positive to negative patients, 
or in other words, the model should be assessed for 
performance on a set of patients that reflects the 
expected real-world population. If the model is 
provided a 1:1 ratio of positive to negative patients 
for testing, the number of false positives (patients 
predicted to have disease that do not actually have 
the disease) will be grossly underestimated. 

In contrast, if the ratio is set according to 
expected prevalence of disease in the 
population, the actual expected number of false 
positives, and therefore a true understanding of 
real-world application, will be defined. The 
example PR curve in Figure 3, generated for a 
model designed to detect an ultra-rare 
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classifier.5 The spies are randomly sampled 
positive examples that are artificially injected 
into the pool of unlabeled examples during 
training. The unlabeled examples (that are 
known positives) are then modeled as if they 
were purely negative, and a traditional classifier 
is trained on the resulting positive and negative 
examples. Specifically, the largest possible 
decision threshold t is found such that only a 
small fraction f of spies, e.g. f = 10%, have a 
classifier score smaller than t. It is assumed that 
the examples with scores less than t are mostly 
clean negatives. The clean negatives are finally 
combined with the known positives and used to 
train a second stage traditional classifier with a 
high purity negative cohort. Once the second 
stage classifier is trained, it can be used to score 
previously unseen examples which pull from the 
same overall distribution of positive and 
unlabeled examples, with the goal of more 
effective identification of true positive versus 
true negative patients.  

comparing the observed incidence of disease to 
clinical estimates of the disease’s published 
incidence or prevalence. In practice, these 
quantities can disagree for a number of reasons, 
including incomplete data capture and 
fundamental differences between clinical reality 
and the actions of health care providers with 
regard to clinical coding and documentation. If 
the goal of a study is to detect all positive 
patients, even those which may go undiagnosed 
in the absence of external intervention, then a 
model grossly underreports existence of positive 
patients since it uses the features for those 
identified as positives as distinguished from 
those marked as negative. Due to the negative 
class having a significant number of unlabeled 
positives, the features that would be used to 
identify a positive are severely diluted.

One intriguing PU learning method proposed in 
the literature is to use “spies” to identify clean 
negative examples in the pool of unlabeled 
examples. These patients can then be used with 
the known positives to train a traditional binary 

Figure 3: PR Curves Adjusted Across Changing Ratio of Positive to Negative Patients

A PR curve should be calculated for a representative ratio of positive to negative patients for diagnostic modeling. If 
not, the curve, and thus evaluation of model performance, can be misleading and lead to inappropriate assessment of 
model performance. Each of the PR curves in this image are calculated for the same model at different ratios of positive 
(diseased) to negative (control/non-diseased) patients. Source: IQVIA case study. 2
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5.1 Predictor Importance 
Predictor importance is typically the first step in 
understanding a model’s decision making. The 
output ranks predictors by the amount each one 
contributes to a model’s ability to identify 
potentially undiagnosed patients. This output 
presents a ranking of predictors, allowing for a 
straightforward initial glance into the model’s 
processes (see Figure 4). Predictor importance, 
for decision-tree based models, can be 
effectively measured with a metric called gain. 
This metric calculates the relevance of a given 
predictor to each tree, and thus to each 
decision/split point, in the model. A higher gain 
value implies that the predictor is more 
important to the decision-making process.   

5.2 Evaluating the Magnitude and 
Direction of Predictor Importance 
While predictor importance is valuable, it 
doesn’t provide detail on the magnitude or 
direction (positive or negative correlation) for a 
given predictor. For these purposes, relative 
risk measurements are useful in more detailed 
quantification of a model’s assessment of 
disease risk associated with specific aspects of 
each predictor. This metric allows for a 
calculation of magnitude, or strength, of the risk 
associated with a given predictor, but also the 
magnitude associated with a specific facet of the 
predictor (e.g. frequency, occurrence, timing). 

For example, in examining a predictor of a 
specific disease, such as the occurrence of 
emergency room visits, relative risk can clarify 
(see Figure 5): 

1. The risk associated with the occurrence of
a visit

2. Risk associated with how frequently the
event occurred prior to diagnosis

3. Risk associated with specific timing
(typically focused on the first event and
most recent event prior to diagnosis)

5.0 Interpreting Model Results 
One of the main advantages of AI algorithms is 
the ability to detect patterns in big data invisible 
to the human eye from thousands of features 
generated without a priori hypotheses. 
However, increasing complexity of modeling 
approaches comes with reduced interpretability, 
rendering perception that many models are 
“black box.” Interpretability of model decisions 
is critical in validating the model’s efficacy, or in 
other words, building confidence that the model 
is thinking correctly about potentially 
undiagnosed patients. Several techniques can 
be employed to help achieve an understanding 
of model behavior, including predictor 
importance, relative risks, and SHAP. 

A note here is that machine learning algorithms 
are—at their most basic level—geometric 
structures that live in multi-dimensional 
“feature space”. Sometimes these structures 
admit low-dimensional representations that can 
be easily visualized, allowing one to elucidate 
the model’s decision-making process with 
relative ease. Quite often, however, low-
dimensional representations do not exist or are 
not readily available.

This latter situation is often the case for rare 
disease modelling, where patient outcomes depend 
on non-linear interactions between numerous 
features. In such cases, one may require a 
model that is irreducibly complicated and thus 
difficult to explain/visualize in one or two 
dimensions. That is to say that while the 
methods discussed here can provide clarity and 
confidence in a model’s decisions and structure, 
they cannot necessarily eliminate certain facets of 
models that may remain too complicated to 
visualize and understand. Below we discuss the 
application of several techniques that intend to 
clarify and validate a model’s predictions, with 
the ultimate goal of building confidence that a 
specific model is truly suitable for use in a 
real-world setting.  



46

technique known as SHAP can determine, for a 
given patient or patient subtype (i.e. gender, age 
group, disease etiology or pathway), the specific 
set of predictors and quantified contribution of 
each predictor to a model risk score.6 This 
method allows for model-driven profiling of 
individual patients or subgroups and helps 
clarify the complex and intricate ways in which 
an AI model derives its risk measurements.  

In addition to associated risk, the directionality, 
or positive versus negative impact, of a predictor 
can be understood. Some predictors may show a 
simple trend in the positive versus negative 
direction, whereas others may fluctuate 
depending on the specific value associated with 
the predictor itself (e.g. frequency versus timing).   

5.3 Additional Patient Level Analysis
To further evaluate patient-level predictions, a 

Figure 5: Example of Relative Risk Measurements for Model Validation

Relative risk is defined as the increased risk of diagnosis associated with a specific predictor, such as the frequency and 
timing of emergency room visits. Source: IQVIA methodology; illustrative examples shown here. 

Figure 4: Assessment of Predictor Importance

Feature importance as measured by model gain and broken out by predictor type (e.g. frequency, timing, and other – 
gender/age). The gain measurement adds to one-hundred percent for all predictors included in a diagnostic model. 
The chart shown here is not exhaustive of all model features, but rather shows illustrative top ten predictors for a 
gastrointestinal disorder. Source: IQVIA case study. 
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cohort if they had at least one claim for a disease 
specific treatment. Additionally, patients were 
selected into the positive cohort if they met the 
composite criteria of at least one claim for a 
shared ICD-9 or ICD-10 code as well as at least 
one claim for the disease non-specific treatment.

For generation of the negative cohort, patients 
were selected if they did not have any evidence 
of the disease specific treatment or the 
combination of diagnosis code and disease 
non-specific treatment mentioned above. Given 
the size of the negative cohort and the rarity of 
the disease (an estimated prevalence of ~1 in 
30,000), an evaluation of the size of potentially 
unrecorded patients (false negatives) in the 
negative cohort concluded that the machine 
learning techniques utilized could address a 
miniscule level of noise expected, eliminating 
the concern of unknown positives. 

6.3 Feature Generation and Model 
Training 
A combination of a data-driven and hypothesis-
driven approach was used to generate a 
comprehensive list of over 300 medical events 
considered as potential predictors in the model. 
To fully capture the richness and complexity in 
the data, metrics including the frequency, 
sequence and timing of events were generated 
for each predictor resulting in over 1200 total 
variables used by the model. 

A gradient boosting tree model (XGBoost) was 
trained using the dataset described above. 
Model performance was evaluated using a PR 
curve projected to the prevalence of the disease. 
In testing, the model successfully identified 
patients at a precision of 23% at lower recall 
levels. Comparing this level of performance 
relative to examining patients at random for the 
disease, based on the estimated prevalence 
mentioned above, the model is shown to be 
highly effective in finding potentially 
undiagnosed patients (more effective than 

6.0 Rare Disease Case Study – Putting 
the Methodology into Action 
To illustrate the above methodology, a recent 
study focused on a rare hereditary disorder is 
summarized below. We describe the overall 
real-world process of leveraging the above 
mentioned methodological flow to build a 
model that seeks to identify potentially 
undiagnosed patients and provide clinical 
insight into the pathway to disease. 

6.1 Study Background 
Patients with the rare condition of interest often 
present with symptoms that resemble more 
common chronic illnesses. Due to the rarity of 
the disease, physicians are not familiar with the 
diagnosis, and thus it is not top of mind in most 
cases. These factors make it difficult for patients 
to be identified and diagnosed, often resulting in 
delays to proper diagnosis, incorrect treatment, 
and unnecessary surgical intervention. The goal 
of the study was to leverage a model to identify 
HCPs that would benefit from increased 
awareness of the disorder and understand the 
pathway to diagnosis, ultimately to accelerate 
time to diagnosis and appropriate management 
of the debilitating symptoms associated with 
the disease. Given that the goals of the study 
were combined clinical and commercial 
outreach endeavors, the team selected an open 
claims data set for the analysis.  

6.2 Patient Selection (Positive and 
Negative Cohorts) 
A challenge in this study was that both the 
ICD-9 and ICD-10 code are shared across 
multiple conditions. This required specific 
refinement of positive patients identified in the 
claims database. Treatments included 
medication with a label specifically indicated for 
the disease (disease-specific treatment) and 
medications that are used across several 
conditions (disease non-specific treatment). As 
such, patients were selected into the positive 
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The use of these models, and advancement in 
the healthcare space, is undoubtedly valuable, 
but must be approached with the proper 
methodological inputs, business considerations, 
and statistical validation. 
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patients or identifying patients suitable for 
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profiles, disease progression predictions, and 
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random by a factor of almost 7,000x). Predictor 
importance and relative risk analysis confirmed 
key medical factors in identifying potentially 
undiagnosed patients with the rare disease. 
Insights around the importance of the timing of 
these medical events and the impact on the 
likelihood that a patient is potentially 
undiagnosed evaluated in relative risk curves 
provided guidance on how to design outreach 
messaging focused upon accelerating diagnosis.  

7.0 Conclusion 
AI modeling for disease detection has ample 
opportunity to drive earlier diagnosis for 
patients in need, and in guiding pharmaceutical 
companies with highly advanced, targeted 
diagnostics to help these patients get properly 
diagnosed and treated earlier in their disease 
journey. As these algorithms expand in use, 
applications will widen, and include, for 
example, timed prediction of diagnosis (i.e. 
predict a diagnosis a certain amount of time in 
advance), on-going autonomous learning based 
on additional newly diagnosed patients (and to 
account for market changes), and incorporation 
into EHR systems to predict risk across not just 
one, but numerous disease states all at once. 
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ARTICLE 4

Empowering Clinical Decisions Using Machine 
Learning Prediction of Prognostic Biomarkers for 
Patient Disease Progression
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Abstract: As the demand for disease early intervention continues to grow, so does the understanding of precise 
disease prognosis. Capturing the key moments during the patient journey to properly manage the conditions 
becomes critical for diseases with multiple stages. In oncologic care, the success in identifying malignant 
progression and early treatment is highly associated with metastasis free survival and better quality of life. With 
the emergence of targeted therapies, biomarkers start to play an important role in cancer management. 

In a recent case study of prostate cancer, we evaluated the probability of patients likely to observe malignant 
progression by analyzing events in the patient’s history with the use of classification algorithms. This 
undertaking defines a malignant progression as an elevation of prostate-specific antigen (PSA), qualified 
on patients with prostate cancer diagnosis and previously treated with androgen deprivation therapy. The 
approach of predicting biomarker results using machine learning is able to provide physicians with insights 
on patient prognosis with a satisfying accuracy ahead of time.  Through these early therapy interventions, the 
brand teams will now have many competitive advantages on their tactical and messaging plans. 

Keywords: Machine Learning, Prostate Cancer, Metastatic Progression, Clinical Decision Support, Physician 
Targeting

With the emergence of targeted therapies, 
biomarkers now play an important role in 
cancer management. Prognostic biomarkers 
such as Breast Cancer Gene 1 or 2 (BRCA1/2), 
Prostate Specific Antigen (PSA) for prostate 
cancer, and Chromosome 17p deletions/
TP53 mutations for chronic lymphocytic 
leukemia, provide valuable indicators regarding 
clinical outcomes, cancer recurrence and 
disease progression. As we further explore 
the utilization of biomarkers in cancer 
management, we come to realize that though 
clinically helpful throughout the patient 
journey, biomarker tests can be challenging to 
use routinely in chronic disease management 
due to high costs and risks associated with 

Background 
As the demand for early disease intervention 
continues to increase, we see a growing interest 
in predicting precise disease prognosis. Patients 
with breast cancer, multiple sclerosis, blood 
cancers or prostate cancer may show signs 
of progression characterized by symptoms, 
comorbidities, patient care events, and other 
diagnoses at various speeds. Patients with 
specific genetic mutations progress even faster. 
Identifying key moments during the patient 
journey and enabling optimal decisions in those 
moments becomes critical for diseases with 
multiple stages. In oncologic care, identifying 
malignancy progression and implementing early 
treatment are highly associated with metastasis-
free survival and better quality of life.1
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related infections.3 As a result, many patients 
are willing to adopt an active surveillance 
strategy4, in which doctors closely monitor 
cancer progression and consider treatment 
only when the tumor appears to show signs 
of growing and spreading. For some patients it 
takes up to 15 years for the cancer to metastasize. 
Within the past five years, fewer than 10% of 
prostate cancer patients were assessed to be 
in the advanced stage where the cancer spread 
beyond the prostate gland at the time of initial 
diagnosis. This may reflect the growing and 
effective use of PSA testing in early screening. 

One of the biggest challenges in prostate cancer 
management is deciding which patients have 
clinically important tumors, and intervening 
early enough to prevent malignant progression. 
This issue is relevant not only in patients with 
newly diagnosed tumors, but also in relapsed 
patients after primary treatment. One method 
to improve ability to predict prognosis is 
utilizing PSA doubling time (PSADT), the 
number of months it takes for PSA to increase 
two-fold, calculated as:5

Many prostate cancer studies have been trying 
to examine PSADT as a predictor of cancer 
prognosis. Studies have shown that patients 
may have very different disease profiling 
pre and post radical prostatectomy. Primary 
clinical studies indicate that among patients 
treated with radical prostatectomy and ongoing 
androgen deprivation treatment (ADT), PSADT 
appears to have greater utility in predicting 
clinical and systemic progression. After the 
initial operation, patients with PSADT less 
than 6 months have significantly higher risk of 
experiencing metastasis compared to those with 
PSADT longer than 6 months (Figure 1).6 

constant screening such as infections, 
stakeholder time and effort, and healthcare 
system resource constraints. Building accurate 
predictions of biomarker thresholds and 
applying them to early disease stages holds the 
potential to add tremendous value to clinical 
decision support.  

This article presents a case study demonstrating 
the use of a machine learning model to predict 
lab results, and its value in clinical support and 
long-term disease management. It examines the 
application of a biomarker called PSA (Prostate 
Specific Antigen), and its clinical significance 
in predicting time to metastasis for prostate 
cancer patients. We develop a mechanism to 
further strengthen the prediction by adding 
multiple dimensions from other healthcare data 
sources, and to replicate PSA’s predictive power 
in an environment where PSA is not available 
to further evaluate prostate cancer progression.  
This is achieved by analyzing patients’ history 
with the use of classification algorithms.  

Case Study Background 
Every 17 minutes another American man dies 
from prostate cancer. Currently there are 
nearly 3.1 million American men living with 
the disease – roughly equal to the population 
of Chicago. Fortunately, high survival rates for 
prostate cancer continue over time thanks to 
early intervention and advances in treatment. 
The overall 10-year survival rate is 98%, and the 
15-year survival rate is 96%. However, once the
cancer metastasizes to bones, organs, or distant
lymph nodes, the 5-year survival rate drops
from nearly 100% to 30%.2 Metastasis to the
bone is the main cause of death.2

While early treatment with surgery or radiation 
has achieved success in preventing patients 
from ultimately dying from prostate cancer, 
research has shown that the treatment is also 
associated with significant morbidity such as 
urinary incontinence, erectile dysfunction, and 
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insurance plan and copay. Companies that 
collect these data often have their proprietary 
algorithms to preserve and merge datasets 
overtime based on known and universal patient 
variables such as name, address, and date of 
birth. As a result, it provides a longitudinal and 
holistic view of in-patient and out-patient care.9  

The longitudinal patient database that the Team 
uses is representative of the US population 
based on age, gender, and insurance type. The 
sample is based upon healthcare claims and, 
through common de-identification process, 
links patients across time and healthcare 
settings such as pharmacies, clinics/office 
practices, and hospitals. This approach to 
patient linking offers the ability to track patients 
year-over-year regardless of health insurance or 
other demographic changes. Consider in 1 year, 
30% of patients change payers at the “national” 
level, 11% of patients potentially change names 
(e.g., marriage/divorce), and 15% of patients 
change pharmacies. This patient-linking 
methodology and stringent requirements in the 
longitudinal patient database mitigates the loss 
and miss-assignment of patients.

However, while playing an important indicating 
role in metastatic progression, the test itself has 
limitations:8

• False positive results: a prostate cancer
patient’s PSA level is elevated but the
cancer is not actually progressing.
Benign conditions such as prostatitis or
benign prostatic hyperplasia (BPH) can
cause PSA levels to rise.

• False negative results: a prostate cancer
patient’s PSA level is low (either lower
than a previous test, or within a normal
range) even though the tumor has been
flaring up with corresponding symptoms.

Dataset Overview 
In full awareness of the predominant 
application of PSADT in predicting prostate 
cancer metastatic progression, our Team was 
tasked with utilizing a Diagnostic Test dataset 
to access de-identified PSA test results and 
incorporate into administrative claims data at 
the individual patient level. 

Claims data usually provides information on 
the drugs dispensed by pharmacies, procedures 
performed, diagnoses at office visits, and health 

Figure 1: Illustration of Prostate Cancer Progression7 
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Based on the Team’s knowledge and experience, 
while the claims data has visibility on lab tests 
status (ordered and/or executed), it typically 
does not include the actual test results, which 
makes tracking disease prognosis challenging. 
In oncology and immunology, lab results serve 
as an important indicator that impacts the 
treatment pathways with great heterogeneity. 

To bridge the gap for this initiative, the 
Team supplements the claims data with PSA 
laboratory results, and EMR data. For each 
patient, the Team can access PSA test values 
& date, claims data (treatment, diagnosis, and 

Although the Team believes that there are 
many benefits to using claims data in patient 
level analysis, the dataset itself might lack 
complete views of full patient history due to 
the differential rate of capture across vendors 
and claims types. Hospital claims usually have 
a low coverage rate for rendered services and 
sometimes include inconsistent reporting 
formats. This impacts the ability to track in-
patient care and link other data sources to 
out-patient treatment after hospitalization. 
A low capture rate for infused and injectable 
drug procedures also results in small sample 
sizes, especially for rare and orphaned diseases. 

Figure 2: Overview of Claims and Lab Data
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are absent.  The model predicts the probability 
that patients will experience metastasis within a 
90-day of treatment window with newer anti-
androgens such as enzalutamide, apalutamide 
and darolutamide – FDA-approved medications 
that significantly prolong the time to metastasis.11 

Methodology Overview

The following steps are taken to execute the 
machine learning analysis:

1.	 Identify the patient cohort
2.	 Reduce variable dimension
3.	 Select the ‘Best’ model(s) 
4.	 Validate the selected model(s)
5.	 Create ensembles of ‘Best’ model(s)

1. Identify the Patient Cohort 
Using the in-depth dataset built for this patient 
universe, the Team’s next step involves setting 
up patient cohorts for the study: a target group 
and a control group. 
 
As presented in Figure 4, the target group is 
defined as high-risk patients whose PSADT <= 
10 months. Patients have been diagnosed with 
prostate cancer for at least one year, have gone 
through at least one of the defined treatment 
procedures (surgery and/or radiation therapy), 
and are currently still on androgen deprivation 

procedure history), and physician information 
at each interaction point (specialty, place of 
service) to form a comprehensive patient view 
of not only prostate cancer but also overall 
individual healthcare journey. Both claims 
and test datasets cover around 280 million US 
patients and the match rate between these two 
datasets is around 90%. 

Figure 3 shows the sample size and match 
rate between lab data and claims data. In this 
market, the Team is able to match between lab 
data and claims data up to 98%. However, not 
all patents with PSA test are diagnosed with 
prostate cancer as this is a quite standard and 
routine monitoring test. The drop from step 
2 to step 3 indicates that only 7% of patients 
with PSA test had a prostate cancer diagnosis. 
Per research from Cancer.org, 1 out of 9 (11%) 
men have prostate cancer at some point in their 
life.10 This sample is in line with the incidence 
rate in this market.

The goal is to use classification algorithms 
to build an accurate prediction mechanism, 
using a sample group of patients with known 
PSA values and in-depth claims data. This 
predictive model was designed to overcome 
PSA accuracy challenges. It extrapolates from 
a small sample of known PSA value patients to 
a broader patient population where PSA values 

Figure 3: Patient Volume Waterfall
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around 8000 features and group into categories 
(see Table 1).

Besides these categories, other similar 
studies12 also mention features such as 
hemoglobin, alkaline phosphatase, alanine 
transaminase, blood urea nitrogen, creatinine, 
and prothrombin time. While there are some 
differences between test and control groups 
for variables such as prothrombin time and 
hemoglobin, alkaline phosphatase and alanine 
transaminase don’t seem to present with 
significance in our models. This could be 
explained by the fact that these two substances 
measure liver functions and will rise to an 

therapy such as luteinizing hormone-releasing 
hormone (LHRH) agonists and gonadotropin-
releasing hormone (GnRH) antagonists. The 
target group patients have not been diagnosed 
with any metastatic features, or been on any 
chemotherapy. The control group is defined 
as patients who met the requirements from 
the target group and also had at least two 
consecutive PSA tests, with PSADT outside 
the high-risk range. Test and control patient 
volume ratio is around 1:4. 

2. Reduce Variable Dimension 
To fully understand the differences between 
target and control groups, the Team captures 

Figure 4: Patient Cohort of the Study During Prostate Cancer Progression Journey7

Raw Variable Examples Source

Demography Age, Ethnicity Outpatient Office Visit Claims

Patient History Family history of PC; personal history of other cancers Outpatient Office Visit Claims

PC Treatment Anti-androgens, androgen deprivation therapies, radiation thera-
py, brachytherapy, cryotherapy and prostatectomy Outpatient Office Visit Claims

Symptoms tumor flare reactions, prostate cancer related Outpatient Office Visit Claims

PSA values date of the test, frequency, actual values Lab data

Other Diagnostic Tests CT scan, x-rays, blood tests Outpatient Procedure Claims

Comorbidities type 2 diabetes, hypertension, constitutional comorbidities Outpatient Office Visit Claims

Physician Attributes specialty (urologist, oncologist), hospital setting NPI/AMA information

Table 1: Raw Features Category
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abnormal level when prostate cancer has 
spread out to liver and kidney, which will be an 
important indicator for post metastasis study.  

A couple of dimension reduction methods 
are run at the same time, such as principal 
component analysis (PCA), Correlation 
matrix, and Multi-dimensional scaling 
(MDS) to validate the level of collinearity 
and dimensionality within the data. Highly 
correlated variables are also removed. The goal 
is to look for consistency of results and make 
decisions on model variable inclusion. The 
primary focus is not only just the statistical part 
of the model interaction but also the practical 
and business side. 

3. Select the Models 
The Team explores and employs a number 
of machine learning models including tree 
algorithms, Support Vector Machine (SVM), 
and artificial neural network. The dataset is 
split in a 70/30 ratio to establish training and 
validation samples. Further ensemble on tree 
model from bagging to boosting is also utilized 
to optimize the modeling approach. 

Each model is trained with both a balanced and 
unbalanced test and control sample. 

Two important terms are used to describe model 
results below: Receiver Operating Characteristic 
(ROC) curve and confusion matrix.

•	 A classification model ROC Curve is a 
plot of the true positive rate against the 
false positive rate (Figure 5). ROC 
indicates how well the model can 
distinguish between the target and 
control groups (in this case, whether a 
patient will experience a malignant 
progression within the next 90 days or 
not). The closer the ROC curve 
approaches the upper left corner, the 
higher the overall accuracy. Figure 5 
came from one of the models selected, 
Adaptive Boosting (ADA Boost). The 
Area Under the Curve (AUC) measures 
how well the model performs at predicting 
the target and control patients.

•	 A confusion matrix is a table describing 
classification model performance for a 
set of control data in which the true 
values are known (Figure 6). Within the 
confusion matrix, the team typically 
evaluates two metrics:
•	 Precision: Answers the question 

“when the model predicts that a 

Figure 5: ROC Curve                                                                        Figure 6: Confusion Matrix                                                                       

n=2,085 Predicted: No Predicted: Yes

Actual: No  TN = 792  FP = 254  1,046 

Actual: Yes  FN = 318  TP = 721  1,039 

 1,110  975 
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patient is in the target group, how 
often is it correct?”.  Precision is 
calculated as TP / (TP + FP) = 74%, 
where TP = True Positive, and FP = 
False Positive. 

•	 Recall: Answers the question “when a 
patient is in the target group, how 
often does the model correctly place 
them in the target group?”. It’s 
calculated as TP / (TP + FN) = 70%.

 
These models end up with strong predictive 
capabilities compared to other classifiers:

•	 Tree model ensemble:
•	 Bagging trees via Random Forest 

(RF): In RF, each decision node uses 
the best among a subset of predictors 
randomly chosen at that node. This 
method has been able to resist over-
fitting. RF is fairly stable when new 
dataset is introduced.13

•	 Boosting methods:
•	 ADA Boost: creates a highly 

accurate classifier by combining 
many relatively weak and less 
accurate classifiers.14 In this 
setting, ADA Boost has the 
highest precision across each 
sample group, making the 
prediction less sensitive to sample 
over or under representation.

•	 Extreme Gradient Boosting 
(XGBoost): training is very fast 
and performs well in unbalanced 
sample.

•	 SVM: works relatively well with a high 
dimensional data, especially with 
features at diagnosis, treatment and 
procedure level. However, because 
training takes a long time, this 
classifier is more difficult to tweak and 
test. It is also sensitive to outliers.

•	 Deep learning in Artificial Neural 
Network: this classifier requires large 
data sample, which is currently not 
supported by the augmented claims 
dataset. 

 
The models returned additional important 
variables. These included features (diagnoses, 
treatments, procedures, etc.) contributing the most 
to predicting malignant progression for a patient: 

•	 Treatment history including hormone 
therapies such as bicalutamide, GRH 
analogs such as leuprolide and goserelin; 
anti-depressants (possibly treating 
androgen deprivation therapy side 
effects), steroids, radiotherapy, and 
overactive bladder treatment.  

•	 Comorbidities such as hypertension, 
anemia, and benign prostatic hyperplasia. 

•	 Diagnostic tests such as ultrasound and 
CT scan. 

 
The Team further analyzes the distributions 
for these features within target and control 
groups across different time periods: all history, 
the average of the previous few quarters, the 
quarter prior to PSADT vs. the average of prior 
quarters (most recent quarter as a separate 
variable to see if there was any difference).  
These “time to event” features are added back 
to the model as an additional boosting feature 
to the existing significant variables. Generic 
product variables are manually removed if they 
have high importance value.

Figure 7 illustrates the percentage of predictors 
explained by each category.

4. Validate the Models 
In the validation phase, the Team creates a 
“real world” dataset with a new set of prostate 
cancer patients outside of the modeling time 
period and an extended look-forward period of 
90 days. Using this longitudinal data, the Team 
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prediction size differently as sample might over 
or under represent certain important variables. 
The precision curve gets smoother once the 
patient size goes up. The final ensemble (red 
dotted line) maximized the precision at each 
given patient volume point and outperformed 
each individual model. 

The orange dotted line represents precision 
from a non-machine learning technique to 
identify patients, such as High Value Targeting 
(HVT). HVT algorithm is applied where 
patients are evaluated by a set of variables 
with a pre-determined threshold such as 

is able to see whether the patients experienced 
malignant progression (such as PSADT<10, 
initiated chemotherapy, secondary malignancy, 
etc.). Final ensemble model is applied to this 
dataset to find the number of true positive 
patients who qualify for the target group and 
are also correctly predicted by the model, and 
calculated precision. 

5. Create Ensembles of ‘Best’ Model(s)
An ensemble of RF, ADA Boost, SVM and 
XGBoost is created that maximizes precision, 
by probability score at desirable patient volume 
(Figure 8). Each model is sensitive to the small 

Figure 7: Predictor Constancy 

Figure 8: Final Model Performance in Real World Data
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To overcome these challenges, the Team 
establishes a set of attribution rules to look at 
the most recent and most frequently-visited 
physicians among each patient’s oncologists and 
urologists. When a patient had multiple urologist 
and oncologist touch points in recent months, 
our rule was able to distinguish the noise (second 
opinions and non-current treaters), the outdated 
(patients who transitioned to another doctor 
within the same specialty), and progression 
transition (urologists who had transferred 
patients to oncologists).

With a list of accurate physicians that patients 
are currently seeing, and a 90-day window to 
influence the decision, the machine learning 
model output is now driving valuable clinical 
support.

Business Applications 
Predicting biomarker results using machine 
learning shows promise as a tool to assist in 
both clinical and commercial settings.

•	 Clinical decision support: besides 
providing physicians with insights on 
patient prognosis with satisfying accuracy, 
this approach is also beneficial for 
alternative treatment considerations. 
When prostate cancer patients are no 
longer responsive to the existing therapies, 
it might be a good opportunity to enroll in 
clinical trials before metastasis, which 
might be a very short time window.

•	 Commercial applications: 
•	 Quickly finding patients who are 

appropriate candidates for therapy has 
become a desirable goal for life sciences 
marketers. With earlier identification 
of appropriate patients, we believe the 
marketers will have the opportunity to 
offer stakeholders highly relevant 
information, education, and support 
resources precisely at the moment 
they’re most needed. 

frequency of office visit, frequency of PSA tests, 
symptoms prior to metastasis, etc. to identify 
a list of patients who might fit into the target 
patient profile. Unlike machine learning that 
scores each patient based on a combination 
of conditions, HVT results turn out to be far 
less accurate. For example, when scoring 3000 
patients, ML’s precision is 5 times higher than 
HVT within first 90 days look-forward. In other 
words, to capture the same number of target 
patients, HVT needs to reach to a population 
that is 5 times bigger than ML. 

Reaching the Right Physicians at the 
Right Time 
Based on the model propensity scores, the 
Team is able to generate a list of de-identified 
patients who are highly likely to have 
malignant progression within the next 90 
days. This type of list can facilitate outreach 
to the right physicians (those managing 
their care) to alert them to the risk of disease 
progression, and the potential need to consider 
next line treatment options. Prostate cancer 
at a non-threatening stage is typically treated 
by urologists up until a point where the tumor 
metastasizes. Should the tumor metastasize, 
patients would then be referred to oncologists. 
At the same time, based on our field research, 
patients may seek additional opinions from 
multiple urologists or oncologists.  

Reaching out to all patient-linked physicians 
is not cost effective, as some may no longer see 
these patients or be integral to their prostate 
cancer care. 

Timing is also crucial. Reaching out to 
physicians after their patients become 
metastatic may be too late. However, getting 
contact too early is not ideal either because 
patients might not experience or show any 
symptoms of progression, thus the information 
loses relevance and value in the treatment 
decision process. 
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•	 The Team is also considering integrating 
consumer information into the dataset. 
With new dimensions added such as 
occupation, income, education, lifestyle, 
hobbies, magazine, and/or TV channel 
subscriptions, and buying behaviors, the 
Team will be able to further improve 
predictions. For brand teams, 
understanding the mosaic of actionable 
patient segments will help guide direct-
to-consumer campaigns to optimal 
impact. Consumer data may also hold 
signals that reveal opportunities to 
communicate with caregivers, such as 
the spouses and other relatives who often 
play an important role helping prostate 
cancer patients with medication, 
appointments and activities contributing 
to their quality of life. 
  

The Team has already received positive 
physician feedback regarding timing and 
accuracy of the model. Next steps will include 
measuring real-world effectiveness, and 
continuing to improve model performance. 
Our hope is that through improved predictions 
regarding precise disease prognosis, the 
Team will help more physicians and patients 
experience the benefits of early interventions, 
and that metastasis-free survival and quality of 
life for prostate cancer patients will continue to 
improve. 

•	 With omni-channel marketing widely 
used, “next best action” has been 
getting more and more attention as 
we continue to refine commercial 
strategies. How the pharmaceutical 
companies optimize the strategy to 
properly guide investment for high 
value physicians in the market has been 
frequently asked by the brand teams. 
With properly attributing eligible 
patients to the true target, the brand 
team can further customize samples, 
calls, and other promotional tactics. 

•	 With a 90-day window built in for 
prognosis prediction, we believe the 
brand team can now schedule the office 
visit at a timely manner. Frequency will 
also be adjusted if physicians currently 
don’t have any eligible patients and 
resources can be reallocated. 

 
Next Steps 
To refine the model, the Team is planning on 
taking the following actions as next steps:

•	 Explore newer advanced algorithms, 
such as deep learning and neural 
networks, to further improve precision. 
Extending the coverage on lab data will 
also increase the modeling sample size. 
The Team is working with multiple lab 
data providers to evaluate the additional 
lab data for the prostate cancer markets.
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ARTICLE 5 
 
A Novel Interpretable Machine Learning Approach 
as a Commercial Decision Support Tool  

Avgoustinos Filippoupolitis PhD; Michael Kusnetsov PhD; Nicola Lazzarini PhD; Hariklia 
Eleftherohorinou PhD—Machine Learning & Artificial Intelligence Solutions Global Unit, Real 
World Solutions, IQVIA

Abstract: Interpretability of a machine learning (ML) model is of high importance, as it enables the users 
to understand which features contribute to a prediction. As the ML model is no longer seen as a ‘black-
box’, interpretability promotes trust and provides actionable insights into the model’s outputs. In this 
work we present an interpretability approach that goes beyond global feature contribution, and allows the 
attribution of the relative importance of ML drivers to individual predictions and to population sub-groups. 
We demonstrate the results of our approach on an ML model based on Gradient Boosting Trees, trained to 
classify Heart Failure with Preserved Ejection Fraction (HFpEF) patients. We further demonstrate how our 
approach enables the identification of sub-cohorts for which a feature is important although its global relative 
importance is low, allowing to identify high-value market segments.

Keywords: Model Interpretability, SHAP Values, Feature Importance, Real World Data, Gradient Boosting 
Trees

effective targeted strategies, often resulting in 
overlooking high value market segments and 
missed commercial opportunities. 
 
2. Objectives 
The novel approach presented in this paper 
takes traditional ML feature attribution 
techniques one step further and acts as 
interpretable ML in healthcare that allows 
the attribution of the relative importance of 
ML drivers to specific population sub-groups.  
It builds on previously published work of 
successfully using ML to identify commercially 
viable patient populations and now helps 
understand the patterns of ML to translate 
them to actions. We compare results with 
traditional approaches for calculating the 
global relative importance of ML drivers and 
we discuss the benefits of our approach in both 
flexibility and interpretability. As annual health 
care marketing spending increased from $17.7 
billion in 1997 to $29.9 billion in 2016, with 

1. Background 
Machine Learning (ML) applications show 
strong potential as commercial decision 
support tools, with an increasing body of 
literature demonstrating ML outperforming 
traditional commercial analytics. As ML 
adoption in commercial applications increases, 
interpretation of the results and understanding 
the patterns identified by the ML model is 
of paramount importance to translate ML 
outputs to actions with both improved patient 
outcomes and commercial impact. That said, 
most ML interpretation approaches focus on 
calculating average relative importance of the 
ML drivers across an entire population and fall 
short in interpreting targeted sub-populations 
of high value. This is especially impactful in 
rare diseases and specialty brands, where the 
populations are small and diverse, at times 
hard to specify with medical codes, making it 
challenging for launch and commercial teams to 
understand the ML inputs/outputs and develop 
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This is a complex clinical condition, which 
is manifested by signs of heart failure, left 
ventricular diastolic dysfunction, and by a 
preserved left ventricular systolic function.4  
The predicted percentage of hospitalized heart 
failure US patients that will have HFpEF by 
2020 is 50%.5 We used features capturing 
information on demographics, treatments, 
procedures and symptomatology, including 
temporal associations between the timing of 
events. These features were selected based on 
clinical expert opinion, as potential risk factors 
for HFpEF. After applying a 1% prevalence 
filter, the total number of features was 98. Table 
1 illustrates the characteristics of our dataset, 
along with the class ratio. Identification of 
the best model parameters has been realized 
using a Bayesian optimization approach.6 In 
particular, we use a Tree-Structured Parzen 
Estimator (TPE) algorithm for hyperparameter 
space exploration. Traditionally, hyper-
parameter selection is based on grid-search,  
an exhaustive search of a specified subset 
of hyper-parameter values.  Instead of this, 
the Bayesian optimiser iteratively evaluates 
subsets of values and automatically identifies 
the direction towards moving to improve the 
results. The TPE algorithm has been shown 
to outperform both grid-search and random 
search over the configuration space of hyper-
parameters. However, the performance of the 
Bayesian optimisation approach depends on the 
probability distributions that define the domain 
of hyper-parameters over which to search.

direct-to-consumer advertising for prescription 
drugs increasing from $2.1 billion to $9.6 billion 
during the same period1 , our novel decision 
support tool for sub-population identification 
and ML interpretation can have a strong impact 
on optimizing resource allocation and increasing 
revenue for pharmaceutical companies. 
 
3. Data 
We employed patient-level data that were 
extracted from transactional IQVIA US 
prescription and medical claims between 2010 
and 2019.  Prescription data are received from 
pharmacies, and contain information such as 
product, provider, age, gender, and date of 
service. Medical claims data are derived from 
office-based professionals, ambulatory and 
general health care sites, and include diagnosis 
and procedure information. The size of the 
dataset was 18.1  million patients, which is more 
than 400 times larger than the next largest 
dataset reported in the literature for Heart 
Failure patient classification.2 
 
4. Methods 
In order to construct a dataset for supervised 
learning, patients diagnosed with Heart Failure 
with Preserved Ejection Fraction (HFpEF) 
in the period between 2015 and 2019, are 
defined as positive, while non-diagnosed are 
considered negative. We demonstrate results 
on a binary classifier based on Gradient 
Boosting Trees3  for diagnosing HFpEF. 

Table 1. Characteristics of Dataset

Patients with HFpEF Patients without HFpEF

Age (mean) 69.74 64.57

Age (std) 8.46 9.32

Gender (% of male) 45.79% 45.84%

Gender (% of female) 54.21% 54.16%

Count 1,646,563 16,465,630
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positive (HFpEF) and negative (non-HFpEF) 
patients (which can be confirmed by Table 1), 
the Precision – Recall curve is a more suitable 
metric as it is robust to class imbalance.8 Figure 
2 depicts the Precision Recall curve for our 
model, where we can observe that the Average 
Precision Score is 0.672. In particular, the 
ML model achieved 91% and 86% precision at 
10% and 20% recall respectively, in identifying 
HFpEF patients and their sub-populations, 
improving by more than 20% on the 
performance reported in the literature.9  

To illustrate the utility of our novel 
interpretability approach, we first apply it to 
demonstrate the global feature contribution 
significance variables for the entire population, 
as illustrated in Figure 3, which illustrates 
the top fifteen features contributing to the 
prediction of HFpEF. The value of each feature 
is the mean absolute SHAP value for each of 
the features in the test set. This is compatible 
to the insights produced by traditional ML 
interpretation approaches, that focus on 
calculating average relative importance of 

We identified and analyzed key drivers of 
the trained model using SHapley Additive 
exPlanations (SHAP) values – a cutting-edge 
interpretability approach that is based on 
recent applications of game theory.7 SHAP 
values describe how each feature used for 
modeling contributes to any prediction made 
by the model. The approach is model-agnostic 
but is optimized for tree-based models such 
as Gradient Boosting Trees. SHAP values 
have two significant advantages over other 
existing interpretability methodologies. Firstly, 
it is the only methodology to have rigorous 
theoretical underpinning. Secondly, it enables 
a much wider suite of analytic and visualization 
techniques as we show below. 
 
5. Results 
Figure 1 illustrates the Receiver Operator 
Characteristic (ROC) curve, where we can 
confirm that our approach performed well in 
identifying HFpEF patients, with an Area Under 
the Curve (AUC) value of 0.939.  As our dataset 
is unbalanced with a class ratio of 1:10 between 

Figure 1: ROC Curve of the Predictive 
Model and the Area Under the Curve 
Value (AUC)

Figure 2: Precision-Recall Curve of 
the Predictive Model and the Average 
Precision of the Model
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of HFpEF symptoms with diuretics as well as 
managing comorbidities, including hypertension, 
because these appear to be the drivers for the 
inflammation that lies at the root of the condition.

A first example of this capability is depicted 
in Figure 4, where we illustrate the feature 

the ML drivers across an entire population. 
Beyond global feature importance attribution, 
our approach can also provide attribution of 
the relative importance of ML drivers to specific 
sub-populations. The model features illustrated 
in Figure 3 are in accordance with prior research 
and with guidelines10 recommending control 

Figure 3: The Top  15  Features Contributing to the Predictions; The X-Axis Shows 
Mean Absolute SHAP Values for Each Feature in the Test Set

Figure 4: Dependence Plot for Age-Based Population Segmentation Identifies a 
Patient Sub-Group for Which Age Has High Significance in Predicting Them as 
Diagnosed, Compared to the Global Population
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To further demonstrate how our interpretability 
approach identifies patient sub-groups, 
Figure 5 illustrates the feature contribution 
significance for the days since first occurrence 
of hypertension. As expected, the feature 
contribution varies for different values of 
the days since first occurrence; however, 
we can confirm that the contribution of this 
feature is significant across all patients, as 
the importance values are consistently above 
the zero-contribution boundary. We should 
also note that the accumulation of negative 
importance values near the start point of the x 
axis corresponds to the subgroup of patients that 
do not have hypertension present in their history, 
and indicates that the absence of this feature is 
contributing towards making a negative diagnosis. 

Our interpretability approach can also reveal 
useful insights for features with a low global 
relative importance. An example is depicted 
in Figure 6, which illustrates the feature 
contribution significance for the days since first 
occurrence of dyspnea on exertion. As we can 
confirm from Figure 3, this feature has a low 

contribution significance for the Age of the 
population. Specifically, the x axis depicts 
the age value of each patient, while the y axis 
denotes the importance of each value for 
predicting a patient being diagnosed with the 
disease. The importance values near the dotted 
horizontal line (zero-contribution boundary) 
do not contribute significantly to the diagnosis. 
The values above the boundary contribute to 
making a positive diagnosis, while the values 
below the boundary contribute to making a 
negative diagnosis. We can confirm that our 
interpretability approach not only highlights 
age as a globally important feature, but also 
identifies a specific group of patients (80 years 
old) for which age is more crucial in predicting 
them as being diagnosed with the disease, 
compared to the rest of the population. This 
can guide commercial teams in designing 
appropriate physician education strategies on 
points of intervention with earlier diagnosis and 
treatment for highly probable HFpEF patients 
and then further classification of HFpEF to 
their sub-populations. 

Figure 5: Dependence Plot for Days 
from First Occurrence of Hypertension, 
Indicates that this Feature’s Contribution 
Is Significant Across All Patients

Figure 6: Dependence Plot for First 
Occurrence of Dyspnea on Exertion, Identifies 
Patient Sub-Groups for which Dyspnea 
Has High Significance, Although the Global 
Relative Importance of Dyspnea is Low 
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patients in this case will be very limited, the size 
of the positive cohort will be small compared to 
the negative cohort. However, this presents a 
challenge for all ML algorithms, as the trained 
model must achieve a high accuracy value by 
learning from a highly imbalanced dataset.

One limitation of the presented approach is 
that its usefulness depends on the accuracy of 
the underlying trained model. When a model 
cannot accurately predict whether a patient 
will be diagnosed with the disease, then 
the calculation of the global and individual 
feature contribution will provide insights 
that are less credible. A second limitation is 
related to combination of features and the 
significance of their contribution. Currently, our 
approach provides attribution of the relative 
importance of single ML drivers (features) to 
sub-populations. Extending this to calculation 
to combinations of features is a direction for 
future work. 

7. Conclusions 
We presented a ML interpretation approach 
that takes ML a step further by helping 
understand the drivers and patterns behind 
the model predictions. Our approach was 
applied to a complex disease and market, such 
as Heart Failure, with important implications 
to understanding and acting timely to sub-
populations, demonstrating the power 
to identify the drivers behind predicting 
population sub-groups. Our approach can 
identify patient sub-populations of high value, 
expose the drivers behind the HFpEF diagnosis 
and highlight patients for which a specific drug 
is likely to yield improved outcomes. 

global contribution significance. We can also 
note that for the sub-population that had the 
first occurrence of dyspnea within the last two 
years before HFpEF diagnosis, dyspnea was 
indeed not important in predicting them as 
diagnosed with the disease. However, for the 
sub-population that had the first occurrence of 
dyspnea three years before HFpEF diagnosis, 
dyspnea was an important factor in predicting 
them as diagnosed with the disease. These 
results illustrate how we can combine the 
attribution of the relative importance of ML 
drivers to specific population sub-groups, 
to identify sub-cohorts for whom a specific 
feature is important even though traditional 
approaches calculate the global relative 
importance of the feature to be low. This would 
allow pharma companies to identify high-value 
market segments that traditional approaches 
often fail to target. 
 
6. Business Implications 
The enhanced insights enabled by our approach 
are beneficial for commercial teams, as they 
enable them to better interpret ML outcomes 
to identify relevant patients and intervention 
points across the patient journey for early 
diagnosis and treatment. They also help design 
effective physician education strategies and 
improve the efficiency of marketing strategies. 
This approach can find wide application across 
ML commercial uses and can help bridge the 
gap from ‘black-box’ to ‘glass-box’ ML, as ML 
becomes increasingly embedded to commercial 
decision making. The proposed approach can 
also be applied to the area of rare diseases, 
considering the limitations related to class 
balance. In particular, given that the number of 
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ARTICLE 6

xDM Explainable Decision Models
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Abstract: The interest and growth in recommendation engines is accelerating in pharma brand management, 
marketing and sales operations. Such systems are evolving to manage decisions on how, when, and what to 
say to physicians to improve sales and physician engagement. To be most effective, systems should integrate 
brand strategy, business constraints, and models that are predictive of human behavior. While the effect of 
each of these decision drivers may be individually understandable, the behavior of the composite overall 
system may be much harder to explain. This is particularly true for systems that rely on machine learning 
(ML/AI) based analytics. Even if the decision system is not business rule constrained, and solely relies on a 
single ML/AI model, its decisions will likely need to be understandable to be persuasive to the stakeholders. 
For example, if a system recommends that a sales rep deliver a particular message to a physician in person, 
it is likely to be important for the rep to know why the system decided that in order for the rep to gain 
confidence in the recommendation and actually do it. 

Recently there has been significant effort in developing approaches to explaining predictions of individual ML/
AI models. This area of research is called explainable AI (xAI). While it is a rapidly expanding area of research, 
there has been very little focus on explainability of more general decision models or systems which may also 
include strategy, optimization, business rules, business constraints and multiple predictive models. This paper 
will start to address this need and propose a broader approach called explainable decision models (xDM).

We will give an overview of the current thinking on xAI which includes structural approaches and model 
induction approaches and will focus on two model induction ideas currently in vogue—the local and global 
models as represented by the LIME and SHAP, respectively. This paper will show how these techniques 
might be applied to decision models and demonstrate the concept using a simplified decision model. It will 
also discuss some of the more subtle issues regarding what it means for a model to be explainable and will 
conclude with a discussion of strengths and limitations.

Keywords: Machine Learning (ML), Artificial Intelligence (AI), Explainable Artificial Intelligence (xAI), 
Explainable Decision Models (xDM), Recommendation Engines, LIME, Shapley

to distinguish the effects of predictors on the 
prediction with a high degree of certainty. To 
aid in this, models were typically parametric, 
and often linear, with a considerable effort 
expanded on what transformations of the 
data were required so that the data supported 
a well understood parametric model whose 
parameters could be interpreted to gain insight 
into the underlying relationship between the 
predictors and the target or predicted. 

Introduction 
The pre-AI world of statistical models had 
a strong focus on models that are predictive 
and interpretable; models that are good at 
predicting the expected value of the target 
variable and that can be easily interpreted. 
Here interpretability meant that the researcher 
could gain a good understanding of the impact 
of a predictor or group of predictors on the 
target value. Many experiments and models 
were and still are carefully designed to be able 
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classification of pictures and text. When a 
model has been trained to identify when a 
picture has a particular element, often using 
neural networks with numerous layers, the 
question is asked—how does one understand 
what is driving that categorization and how 
can we trust the prediction? Even notions of 
explainability and the motivations for such 
are not simple and are varied.10 There are also 
important legal aspects to explainability as 
several authors have noted; with the European 
Union passing a law, “Right to Explanation” 
requiring models to have some levels of 
interpretability.3, 6

The focus of this paper is to explore the 
current thinking and approaches to model 
explainability and to extend them to the 
context of decision models. Although much 
of the technology that’s been developed is for 
models that classify pictures or text, we explore 
applying this technology to decision models in 
the domain of marketing analytics where the 
objective is to identify the best next marketing 
action for one-to-one personalized marketing. 

The next section reviews recent work in 
explainability. Then, a formal definition of a 
decision model within the marketing analytics 
domain is presented. Finally, the approach 
is illustrated using a real-world example and 
several different explainability models. 

Review 
David Gunning of DARPA is largely recognized 
as coining the term xAI for explainable or 
interpretable AI. The question at the core of 
interpretability is whether humans understand 
a model enough to make accurate predictions 
about its behavior on unseen instances and 
whether humans have enough confidence 
in the model to “believe in it.” He breaks 
down the notion of explainability into several 
categories:13, 5 

As the science and technology for building 
predictive models evolved, it has resulted 
in more complex and opaque models. The 
neural networks, deep neural networks, and 
ensemble models are some methods that are 
currently popular. This popularity stems from 
the improved predictive accuracy they provide 
when compared to traditional parametric 
models. The cost of this improved accuracy 
is the loss in clarity in how the predictors 
impact predictions and their relationship to 
the structure of the model. In general, there 
is a trade-off between the accuracy of the 
model and the transparency of the model and 
how it works. If the relationship between the 
predictors (features) and the target is simple 
then parametric models can be used and easily 
understood by analyzing the parameters that 
describe the relationship between the predictors 
and the target. However, if the relationship 
is complex and non-linear then parametric 
models will not give accurate predictions without 
complex transformations of the predictors to 
simplify the relationship before building the 
parametric model. This in itself is a difficult task. 

Understanding the roles that predictors play in 
complex machine learning models is currently 
referred to as “explainability.” The need was 
always important and has been a topic of study. 
For example, it was addressed explicitly with 
ensemble tree based models like random forests 
with the concept of an importance family of 
metrics. These metrics are based on the average 
change in prediction accuracy or decrease in the 
Gini importance across the ensemble of trees 
using an out-of-bag (OOB) sample of the data—
data not used in building the trees.15 However, 
the need for understanding model behavior has 
not kept up with the advancement in modeling 
technologies as evidenced by the recent growth 
in approaches to explainability. 

The topic of explainability in AI/ML models 
has largely focused on explaining models’ 
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This may be somewhat confusing because 
each approach may rely on data that is both 
local and global and the boundary is fuzzy. 
However, in this context local often means that 
the explanation applies to a specific prediction 
of the underlying model, namely at a single 
point in the space of training or test data. Since 
many of these approaches were developed for 
classification of pictures, local means, for this 
specific picture, identifying the drivers of the 
specific classification. A broader question is how 
well does the model generalize to other pictures, 
and what are the explanations and how can one 
gain confidence in how well the model would 
classify other pictures. 

As Ribeiro says “Most local approaches 
provide explanations that describe the local 
behavior of the model using a linearly weighted 
combination of the input features. Linear 
functions can capture relative importance of 
features in an easy-to-understand manner. 
However, since these linear explanations are 
in some way local, it is not clear whether they 
apply to an unseen instance. In other words, 
their coverage (region where explanation 
applies) is unclear. Unclear coverage can lead 
to low human precision, as users may think 
an insight from an explanation applies to 
unseen instances even when it does not. When 
combined with the arithmetic involved in 
computing the contribution of the features in 
linear explanations, the human effort required 
can be quite high.”12 

Local 
Although some of the techniques present 
themselves as locally focused and others as 
globally, the distinction is sometimes somewhat 
ambiguous. Both the LIME and the Anchors 
approaches claim to be locally accurate. LIME, 
which stands for local interpretable model-
agnostic explanations, fits a new linear model in 
a local neighborhood around a given data point. 

• Deep Explanation: modified neural nets
and deep learning where the nodes are
identified with features so that the
weights on the various layers illuminate
the particulars driving the model.

• Interpretable models: linear models,
parametric models, tree models, Bayesian
models, and other models where the
structure is relatively transparent and can
be explicitly understood.

• Model Induction: models of models,
examples include: LIME (local interpretable
model-agnostic explanations)13, SHAP
(Shapley additive explanations)11,
Anchors12, CLEAR (counterfactual local
explanations via regression)16, LOCO
(leave one covariate out)9, etc.

As the list illustrates there is a lot of attention 
being focused on what Gunning calls “Model 
Induction” methods. These are methods which 
in effect are models of models. The assumption 
is that the underlying structure of a complex ML 
based model is hard or impossible to explain so 
you build another model “on top of the underlying 
model” that can more easily be explained. Much 
has been written about what explainable or 
interpretable means in this context.3, 4, 10 Some 
have suggested that interpretable means that 
a human can predict what the model will do 
with unseen instances—can the human predict 
what the model will do?12 This topic has been of 
interest particularly in Europe where model based 
decisions are being scrutinized for biases and the 
need for interpretability is being pushed into law. 
It is interesting to note that issues of bias may 
not be due to the modeling methods but may be 
inherent in the data on which the model is built. 
If there are biases in the data one shouldn’t 
expect the model to ignore that. 

Analytic approaches to this explainability fall 
into one of two classes, either local or global 
depending on the type of explanation model. 
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LOCO (leave one covariate out) is an approach 
for generating metrics that measure variable 
importance. The metric is based on differences 
in errors from a complete model or a model 
built without one of the covariates.9 The metric 
can be analyzed in a local manner or a global 
manner by applying it to every instance in the 
test data set and then analyzing the distribution 
of the variable importance metric. The single 
instance metric is similar to the variable 
importance measure used in random forests 
by analyzing the decrease in node purity by 
changing the order of variable splits.1 

Global 
The SHAP (SHapley Additive exPlanations) 
is presented as a unified framework for 
interpreting predictions; it assigns each feature 
an importance value of a particular prediction.11 
In this way it is similar to some of the local 
approaches described above.  

The framework presented by Lundberg, 
illustrated in Figure 1, is called additive 
feature attribution methods. Let f() be the 
underlying prediction model to be explained 
by explanation model g(). At a single point of 
X a transformation of the features x to z by a 
function  such that f(x)≈ g(hx (z)) where 

 and M is the dimension of z which 
may be smaller than x. Then, the linear additive 
explanation model is defined as 

For LIME, h() maps the binary interpretable 
z variables to the original variables x. Specific 
values for φ are found by minimizing a loss 
function that measures the distance from f to 
g with a penalty for complexity—to reduce the 
number of non-zero φs. Since this additive 
explanation model is linear, the values of the 

 in the solution easily explain the impact 
of the features in the underlying model f() at 
the point x. Finally, under three regularity 

LIME saves a collection of weighted predictions 
from the model at sampled instances around 
the point of interest. Weights are determined 
by distance to the point of interest. The 
coefficients of that model hold the explanation. 
It then uses this new, linear approximation to 
the underlying model to explain how the more 
complex model behaves. 

The Anchors approach is motivated by the 
lack of the ability of the LIME linear models 
to account for interactions effects. It is also 
a local explanation algorithm. Anchors is 
motivated by the fact that the univariate aspects 
of the importance coefficients can lead to 
some ambiguous attribution of explanations 
particularly in text mining applications. 
Anchors looks for a set of features such that 
if any features not in that set are included the 
predictions do not change “substantively.” 
Substantively is defined by the expected value 
of the likelihood of a change in prediction being 
less than a prescribed amount. The approach 
is computationally complex since a large space 
needs to be searched in order to satisfy the 
Anchors criteria.12 

Another approach that seeks to improve on 
the LIME model is called CLEAR. This exploits 
the use of counterfactuals and also provides 
to expand the LIME univariate limitations. 
CLEAR uses the concept of w-counterfactuals to 
explain a prediction by answering the question 
of “what if things had been different” with the 
feature set. Rather than randomly sampling the 
data and weighting by proximity to the point of 
interest as LIME does, the CLEAR method is 
to systematically search the space around the 
data point of interest and evaluate the model at 
those points producing counterfactuals to identify 
classification changes. The points at which this 
occurs can then be used to build a regression 
model for explanation, thus improving the fidelity 
of the explanation around the point in question. 
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value to the firm. The choice of model depends 
on numerous factors in the decision problem, 
including the frequency with which the decision 
needs to be made, the value in making a “good” 
decision vs the opportunity costs in making a 
“bad” decision; the information available at 
the time the decision needs to be made; the 
reliability of the available information; factors 
and restrictions associated with implementing 
the decision; and other issues. There are many 
different approaches and models used to navigate 
decision problems based on these factors. The 
focus here, as discussed above, is on decision 
models for marketing decisions. These are high 
frequency decisions that individually have low 
value but collectively can be of significant value in 
driving revenue and shaping brand perceptions. 

Marketing focused decision models are often 
associated with recommendation engines. 
Recommendation engines are designed to maximize 
the market basket; if you bought this product you 
are likely to purchase this other product. This is 
somewhat tangential to the marketing decisions 
required by pharmaceutical sales operations and 
brand management. In this domain the market 

conditions (Local accuracy, Missingness, 
Consistency) Lundberg derives a fully 
characterized SHAP solution that is exact for 
g(). See Lundberg11 for details.

This approach is similar to LOCO in that a 
new model is built for each predictor leaving 
the predictor out and then that new model is 
evaluated at the point of interest (that’s the 
local part) and the difference in the value of 
the prediction with the prediction from the full 
model is weighted by the non-zero occurrences 
for that predictor as shown above. 

This review is not meant to be exhaustive but 
touches on some of the newer and more unique 
thinking and algorithms. There are many others 
including partial dependence plots, recursive 
partitioning, other decision tree methods, and 
just about any “white box” model. 

The Decision Model 
A decision model (DM) is a model that 
recommends a value maximizing action to be 
taken. These types of models are used when 
there are decision choices made to maximize 

Figure 1: SHAP Framework at a Single Point x
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membership, HCP potential, and such, 

patient data that describes the HCP 
patient population characteristics, 

contact history that captures the 
history of contacts with the HCP, such 
as number of visits, emails sent, topics 
of emails, topics of visit conversations, 
documents provided, webinars attended, 
conferences attended, and such. 

For the non-time-dependent version, each row 
in X is a single HCP. For the time-dependent 
characterization, data for a single HCP could 
be replicated in multiple rows and the data in 
each of these might be for different time points. 
There are other useful representations of the 
data which might aid in model development; 
exploring them would not be of relevance to this 
discussion. 

The typical setting is to find a model f(X)=Y  
that can be used to predict the target with all 
the input data as described above. Of course, 
regardless of the method for fitting the model 
it will not be perfect so we represent the fitted 
model by  so the error associated with the 
model is Y– . 

In this context, an explainable model is one 
for which humans can understand why  is 
predictive, which areas of the domain X the 
predictions are particularly good, where they 
aren’t, and most importantly why we should 
believe that captures the structure in the 
relation of the variable X to Y. Without that 
confidence and insight into the model it is hard 
to justify its use in making business decisions, 
particularly to those who are not versed in the details 
of model building, machine learning, and AI. 

In the context of using a predictive model as a 
decision model we seek to identify some set of 
variables within X as decision variables. These 

basket is somewhat limited; the competition tends 
to be well defined; the marketing tools are limited 
and can be legally restricted; the objectives can 
also be longer term in the sense of building 
brand loyalty in addition to increased sales. 

This domain specificity and complexity requires 
a special kind of decision model, one that is 
flexible and can accommodate multiple inputs: 
the result of numerous ancillary predictive 
models; raw data; rules and conditions; and 
constraints on decision actions. The following 
section describes a decision model which has 
this needed generality. This is referred to as 
the underlying model and it is the object of 
explanation in this paper. This decision model 
can be very complex and in fact need not be a 
stochastic model but is assumed to be a “black 
box” and complex enough so that its behavior 
is opaque and requires explanation. In practice 
decision models are very often stochastic 
models and rely on the solution of multiple 
prediction problems for which ML is used. 

Note that the description that follows is in reality 
time dependent but to simplify this exposition 
we will suppress that dependence. We believe 
that will not result in a loss of generality. 

	 Y be a target variable. It could be a 
categorical variable such as whether a 
physician takes a certain action like open 
an email or read an online report. Or, it 
could be a continuous variable like the Rx 
for a target therapeutic or market share 
associated with a therapeutic, segment 
membership, perceptions, or other 
measures of HCP value. 

	 X be the features that are believed to be 
predictive of the target. These could be: 

demographic data that characterizes 
the HCP such as age, gender, 
educational background, segment 
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example, there may be a recent introduction of 
a competitive therapeutic into the marketplace 
that the brand team wants to proactively address. 
There are numerous other scenarios for which 
the brand teams would want to specify actions 
and decisions derived from the data might not be 
desirable. Other examples include: 

• coordinating interactions with
uncontrolled publications and other
information

• requiring visits when commercial metrics
change in statistically relevant ways

• timing interactions with seasonal
commercial drivers

• coordinating messages across therapeutics

Let R denote the set of rules and then represent 
D  as the union of constraints and rules, namely 

 .

It is important to note that the strategy of 
maximization over the D variables contains 
an implied causality associated with them. 
For the purpose of this paper we are assuming 
that an experiment can be designed to capture 
this causality in the data. This could be done 
by sampling from the population of HCPs 
(i.e. potential X variables) and then randomly 
assigning actions (i.e. potential D variables) to 
them and execute on those decisions. Of course, 
there are optimal experimental designs that 
could be used; that is a topic for another paper. 

Finally, although d*(x) as presented is based on 
a single fitted model, in practice the function 
being optimized could be an algorithm with 
many components including heuristics, raw 
data, feature engineered data, and the results 
of statistical and machine learned models. This 
generality does not change the approach presented 
below, in fact, the more opaque the function 
being optimized by d() the more to be gained by 
employing an explanation model of d*(x).

are variables on which we have some control, 
for example, send an email; send an email 
about topic A; visit and discuss topic A; visit 
and then send an email about topic A. Let’s 
denote that subset of variables as D so we can 
re-characterize the predictive problem as to find 
f() such that f(X,D)=Y. 

The goal of finding f() is to use the information 
contained in it to make decisions on what 
actions, what specific values of the D variables 
are best, to take to maximize some value Y. 
We can express this as finding the d*(x)  that 
maximizes f() as  

In practice all possible choices for d() may 
not be feasible from a business perspective. 
For example, the maximizing d*(x) may be to 
visit an HCP immediately. While that may be 
desirable from the perspective of maximizing 
the value of an action, it may not be feasible 
because of logistical realities; the medical 
representative may not be available at that time. 
Other examples of constraints include 

• maintaining a pacing of visits
• coordinating visits with non-face-to-face

interactions
• traversing the territory systematically

To capture those realities in the characterization 
we denote a set of constraints by C. The 
definition of d*(x) becomes 

where  denotes that the searchable space of 
d values satisfies the constraints. 

Another reality encountered in practice are the 
business rules that the brand management and 
sales operations teams require the decisions 
to meet. These can result from various plans 
and information that may not be captured 
in the relationship between (X,D) and Y. For 
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There are many ways to accomplish this, as is 
evidenced by the research summarized above. 
The specific data used to estimate xDM() could 
be used for the explanation model following the 
LIME approach, or counterfactuals could be 
used following the lead of the CLEAR approach. 
Counterfactual data are observations that were 
not sampled from the original data used to build 
the model but are data from which predictions of 
model are calculated. These are typically used for 
scenario analysis and exploring the implications 
of using the model for some practical purpose, like 
“what would the model predict if this happened.” 

The approach chosen here is to use the 
counterfactual data that covers the space of X 
or part of that space surrounding, for example, 
z. This flexibility means that the explainability
model can be used to gain insight into the
broader applicability of the DM to the business
objective. The schematic in Figure 2 shows
how the various components of the xDM
explainability model fit together.

In addition to generalizing the application of 
explanation models to DMs, a contribution of 
this approach is the use of counterfactuals as 
the sample space of the underlying model that 
is to be explained, in ways similar to the CLEAR 
approach. This presents the opportunity not 
only to explain a large part of the decision space 

Explainability 
Explanability in the case of a decision model 
differs from explanation models commonly 
in practice. This application does not seek to 
identify the features driving the classification 
of an instance of a picture or text but seeks 
to identify the features driving an optimal 
decision. As for xAI, the business users of 
decision models may be reluctant to rely on 
an opaque model that just gives a decision or 
action. They often seek a deeper understanding 
of what the model is doing and what areas of 
the predictor space lead to specific decisions. 

The rich literature of xAI presents numerous 
algorithms and approaches to leverage. Many 
of these can be applied to understanding and 
explaining DMs. So far, there have been limited 
research on explanation algorithms outside 
classification. One notable example uses a neural 
network to learn the underlying explanation 
space produced by a ranking algorithm.8 We 
take a similar approach in building a model to 
learn the underlying explanation space from a 
decision model (DM). To achieve this we seek 
an explanation model xDM(x) that predicts 
the result of the DM, namely d*(x), and can be 
characterized simply to give insight into the 
behavior of the DM. Such an explainability 
model would be  and would satisfy 

 at a specific point z. 

Figure 2: Schematic of the xDM Components
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Decision Model
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facilities. The total number of records exceeds 
475,000. The variables in the data set are 
summarized below. Each record contains: 

facility: a code for one of 11 facility 
groups indicating the quantile for the 
sales of the particular facility. 

	 appointment: the number of sales 
rep’s visits to one of the HCPs in facility 
that was scheduled before the visit. This 
variable has 6 unique values, 0 to 5 for 
the number of appointments at a facility 
in a quarter. 

	 conference: the number of conferences 
that HCPs within the facility attended. 
This variable has 2 unique values, 0 and 1 
for the number of conferences at a facility 
in a quarter. 

	 group: the number of group meetings 
that the HCPs within the facility attended. 
This variable has 8 unique values, 0 to 
7 for the number of group meetings at a 
facility in a quarter. 

	 email: the number of emails sent to 
HCPs within the facility. This variable has 
6 unique values, 0 to 5 for the number of 
emails sent to a facility within a quarter. 

	 visit: the number of unscheduled visits to 
the HCPs within the facility. This variable 
has 56 unique values, 0 to 55 for the 
number of visits to a facility within a 
quarter. 

	 qtr: the quarter for the data. This 
variable has 4 unique values. 

	 product: a number indicating the 
specific therapeutic product which was 
the focus of the meeting or email. This 
variable has 2 unique values, 0 and 1 
identifying the therapeutic. 

but enables the exploration in a very deliberate 
and controlled way. The cost of this is that if 
the space of (the counterfactual data of) the DM 
model i.e. (X,D) is very large, the computational 
costs become large and potentially infeasible to 
completely explore. However, insight into (X,D) 
and in particular in relation to the constraints 

 provides potential ways to address the 
explosion of the decision space. 

Example 
Rather than use a “toy example” we illustrate 
the concepts presented above using anonymized 
data from an overseas client. The business 
objective is to assign the number of quarterly 
visits to each facility (doctor’s office, clinic, 
or hospital) that maximizes the sales of 
each of two therapeutic products. There is 
strong motivation to reduce costly individual 
visits, potentially replacing them with group 
conferences and/or emails and freeing up 
resources so that more facilities can be served 
with the same resource overhead. In other 
words, to maximize sales as a function of visits 
by identifying where and when it is best to visit. 
To do this, a decision model (DM) is built that 
finds the sales optimizing number of visits to 
each facility. Using the terminology from above 
the description below shows: 

• a prediction model  to map 
features to sales,

• an unconstrained decision model d*(x)
of visits to facility f that has a history of
interactions,

• a constrained decision model d*(x) of
visits to facility f,

• two different explanation models to
interpret the decision model d*(x)

Data 
The data are anonymized on contact frequency 
and sales on 2 products reported on a quarterly 
basis for 3 years from about 19,000 medical 
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functions of the observed data would be 
constructed to capture, among other things, the 
impact of actions over time. 

Prediction and Decision Models 
The prediction model  was built using 
random forest* regression with the target (Y 
from the earlier description) being the sales 
deviation from mean group facility sales. All the 
variables listed above were included in the model 
which explained 72% of the variation. The 
variable importance for the predictors is shown 
in Table 1.   

The table shows that facility group, visits, and 
quarter are the most important predictors. 
%IncMSE refers to the error of the random 
forest model and by how much the model would 
be made worse if that variable was replaced by 
randomly permuted (destroying correlation with 
the other variables in the model), whereas 
IncNodePurity is a measure of homogeneity. It is 
desirable to have the nodes to be homogeneous 
each time a node is split. Since the variable qtr has 
the greatest %IncMSE it may be considered as the 

To illustrate the approach, a random sample of 
500 facilities was taken from the cleaned data 
set. All the observations from each of the 
sampled facilities are included in the analysis. 
The average sales per facility for each product 
was calculated and the deciles for the 
distribution of facility sales means was used to 
bin each facility into one of the sales deciles. 
Unfortunately, the data does not include the 
number of prescribers in each facility, but we 
use average sales in a facility and facility as a 
surrogate for the missing information. The 
target variable to be maximized was the sales 
difference from the average facility sales. 

Figure 3 shows two views of the number of 
observations visit vs facility which show that 
there is good coverage of the distribution of 
observations across these two dimensions. Note 
that the other dimensions are much more 
sparsely populated, but since visits is the 
decision variable of the DM it is important that 
there be good coverage across the more dense 
variables in the data. Finally, if a more complete 
DM was being built, features that were 

Figure 3: Data Coverage
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We use counterfactuals to generate 2,838,528 
observations that cover the complete space of the 
predictors. These data will be used to build the DM. 

The surface defined by the predictions of  is 
an 8-dimensional surface. Since the 
observations that go into defining the “surface” 
are from the predictions of a random forest 
model and not some parametric smooth model, 
there are discontinuities in the surface as is 
evident in the plots. Figure 5 shows that surface 
across 4-dimensions for two quarters. Note that 

most important predictor, because replacing it 
with noise would most degrade model performance 
compared to replacing other variables with noise. 
The plots in Figure 4 show the model’s predicted 
values vs. the actual target values for each of 
the products. The plots show a strong diagonal 
pattern which confirms that the model fit is good. 

As described above, the approaches to building an 
explanation model to evaluate the prediction model 
either on a sample of the data set used to train 
or test the model or on a set of counterfactuals. 

Table 1: Random Forest Variable Importance

%IncMSE IncNodePurity
qtr 133.16188 4.089630e+13
visit 125.76667 1.780477e+14
facility 102.33283 7.961670e+13
email 84.30202 8.880591e+13
appointment 77.56009 1.281616e+14
group 56.38927 5.964828e+13
conference 47.18138 3.337538e+13
 product 31.50224 7.460655e+12

Figure 4: Model Fit
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The plots in Figure 6 show the average of the 
number of visit values above the 95% quantile 
for several combinations of predictors. They also 
show a kernel estimated line through those 
points.* Even though the maximum is not used 
and the average above the 95% quantile is used for 
convenience, it will be referred to as the maximum. 

In the plot on the left this line shows the 
maximizing number of visits as a function of 
facility sales size, number of emails sent, and 
number of appointment details. Appointment 
details are increasing as the plots move to the 
right and email sends are increasing as the plots 
move up the page. The plot shows that the value 
of visits increases with facility size when there 
are fewer appointment details but that trend 
inverts as appointment details grow. One might 
expect that appointments are more important 
as facilities grow. It also shows that the impact 
of email sends is more subtle. 

the surface varies across the quarters (only two 
are shown), across the facilities, and across the 
products. The first row in each plot is for product 
1 and the second is for product 2; as the plots 
move from left to right the facility decile 
increases. Some of the variance and fluctuations 
in the plots are due to the discontinuities of the 
random forest model and some are due to the 
hidden variables that are not shown on the plots. 

Figure 5 also shows more detail on this 
prediction surface as well as providing some 
insight into the DM. Notice that the plot on the 
right has blue and red lines; these are the 
maximum and the 95% quantile for the 
prediction in each of the identified dimensions. 
The value of visit where the maximum 
intersects is the value for d*(x) for that set of 
predictors. Since there is variance associated 
with the prediction model method, the average 
number of visits where the prediction for those 
values is above the 95% quantile within that bin 
of predictors is used as the value for d*(x).  

Figure 5: Prediction Surface

* Kernel estimate is from the smoothing option in the lattice package of R.
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review section above. These approaches do not 
give multidimensional insights in the sense of 
identifying the impact of covariates. 

This is similar to looking at marginal plots 
across a handful of dimensions, as discussed 
above, which gives some insight into the 
underlying decision model but does not capture 
all interactions and their relative strengths. Nor 
does it provide a clear understanding of the 
relative impact of the different variables on the 
optimal decision d*() as, for example, variable 
importance in random forest models. The 
explanations models in xAI, like variable 
importance, provide insight into what drives 
predictions of the underlying model. The 
analogy for DM is to explain what is driving the 
optimal decision and how varying from that 
decision impacts the result, namely, what are 
the importances of the variables involved. 

To explore this, let’s focus on an instance d*(z) 
where z is a particular decision point. There are 
general questions: what is driving the optimal 

The plot on the right is similar but focuses on 
group details in place of appointment details. 
Group details are increasing in the plots to the 
right and email sends are increasing as the plots 
move up the page. Group details are more cost 
effective since a number of prescribers are 
simultaneously in a meeting. In general, it shows 
that more visits are needed as facility size grows. 
This is somewhat counter-intuitive but may 
suggest that the HCPs need more explanation in 
face-to-face visits after group meetings. Since 
these are views of marginal slices through the 
decision space, it is difficult to get a complete 
understanding of the drivers and shape of d*(), 
hence the need for an explanation model. 

Explanation Model 
In explainability approaches like LIME and 
CLEAR, explainability is obtained by analyzing 
the behavior of the underlying model at a single 
point by sampling the underlying model in the 
space around the point of interest similar to 
above. In the case of LIME, a linear model is 
built based on those points as described in the 

Figure 6: Decision Surface
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d*(z)  with regard to changes in z, namely with 
regard to facility, or product, or quarter; the 
other is when z is fixed (say at z*) what is 
driving the particular solution d*(z*). As 
described above, if the model  is 
understandable then because 
at the point z insight into what variables drive 
the optimal decision is achieved. 

Consider an arbitrary value of z* as facility 7, 
product 1, and quarter 1. In a business setting 
all facility groups, products, and quarters will be 
of interest and will have sales efforts applied to 
them, so it makes sense to want to optimize the 
marketing treatment with that segmentation 
applied. In fact, one might expect that the sales 
organization would identify the optimal 
treatment in each of the facility, product, and 
quarter segments and then use that result to 
assign resources to maximize return on effort. 

Focusing on this particular z* segment for the 
moment, the optimal value for d*(z*) calculated 

across all counterfactuals is 3 appointments, 0 
conferences, 0 group meetings, 0 emails, and 8 
visits. Note the use of counterfactuals (as with the 
CLEAR approach) to evaluate  and find 
d*(z*) means that the complete space is available. 

Since d*(z*) is a point in the solution space 
based on an optimization of  which is 
noisy (see Figure 5) exploration of the surface 
defined by points near d*(z*) with a model that 
can be understood will provide insight into what 
is driving the optimization, namely what 
variables impact the solution near the solution? 
To do this, several choices to fitting  are 
examined including recursive partitioning.* 

Figure 7 shows two trees fit to predict proximity 
to d*(z*) by using all solutions within 70% of 
the optimal solution and as target the percent of 
optimal. The tree on the left is for an 
unconstrained decision model and the tree on 
the right is for a constrained model. 

* The rpart package in R is used

Figure 7: Local Drivers of Near Optimum Performance
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In the tree on the left, the top node labeled 0.75 
and 100% indicates that the average percent of 
optimal is 75%, and that accounts for all 
subnodes. The subgroup having group value 1 
represents 56% of the population and has a 
mean percent of optimal of 74%. The tree also 
shows that the optimal solution can have visits 
of 8 or less and have 0 or 1 email and achieve 
91% of optimal. The tree shows which variables 
are not drivers are not important and not 
drivers of away from optimality—those not 
included in the tree. It is important to note that 
this is a local explanation giving insight into the 
variables that impact optimality within a 
neighborhood of the solution d*(z*).  

The constrained decision model incorporates a 
constraint that requires the number of emails 
sent to be at least 25% of the number of visits. 
This is a typical type of constraint that sales 
operations and brand management teams 
would want to impose. The tree on the right in 
Figure 7 shows that the visit variable is the most 
consequential in driving to the optimal solution. 
It is interesting to compare the optimal values 
of the constrained and unconstrained solutions. 

The optimal value of the constrained solution is 
approximately 30% less. This is to be expected 
since a constrained solution would result in 
a decreased optimum. This model does not 
capture the business benefits of the distribution 
of marketing resources. 

Global Explanation 
The exploration ideas developed in the previous 
section focused only on gaining insights into  
d*(z*) in a neighborhood of z*. Here we use the 
same approach to gain insight from a “more 
global” perspective and to find the variables that 
globally drive optimality at the point of interest. 

Figure 8 shows the same approach as used 
above and shown in Figure 7 but instead of 
restricting the search space to within 70% of 
the optimum the entire space of predictions on 
all the counterfactuals are used in the recursive 
partitioning algorithm. It is not surprising that 
the variables’ order of splits tracks with the 
order of importance as shown in 1, namely visit, 
email and group. The constrained analysis in 
the tree on the right shows the impact of the 
constraint driving emails into the solution. The 
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branch on the right labeled email >= 5 contains 
83% of the space and accounts for a mean 
62% of the constrained optimum value. The 
sub-branches show there is a tradeoff between 
group visits and visits that help the decision 
model to navigate the email constraint. 

LIME Explanation 
How do these recursive partitioning based 
explanations compare to other “more standard” 
derived explanations, like from the LIME 
algorithm? An implementation of the LIME 
algorithm was developed for this example. The 
standard implementation samples from the 
test set and then builds a linear model using 
predictions on the sample points weighted by 
distance to the point of interest. The coefficients 
associated with the linear explanation model 
yield the importance of the predictors for 
that particular explanation point. The current 
implementation has been modified to use 
counterfactuals across the entire space used to 
evaluate d*(x). 

Similar to the standard LIME approach a point 
is selected (the z*) for analysis, but then rather 
than sampling additional points around the 

point of interest, all counterfactuals within a 
hypercube with side length 2 are sampled. Note 
that this example has all integral predictors so 
a unit hypercube is a natural choice. If some 
of the predictors were continuous a similar 
approach could be taken, although a different 
strategy would be needed to evaluate the DM 
counterfactuals. The current implementation 
also weights the observations in the LIME 
explanation model by exp(−w) where w is the 
distance from the points in the hypercube to the 
point of interest at the center of the hypercube. 

A linear model is built with the weighted 
hypercube values as predictors and where the 
target of the model is the percent deviation 
from the optimal value. This is the same target 
as was used in the recursive partitioning 
exploration of the space. The plot in Figure 9 
show the coefficients for two estimated models: 
one for the constrained model and one for the 
unconstrained model. The predictors are along 
the horizontal axis and the coefficients on the 
vertical axis. The table shows the values. The  r2 for 
the unconstrained model is .97 and the constrained 
model is .98. For each model the variables 
appointment, conference, and visit were highly 

Figure 9: LIME Estimates
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significant and the constrained model the 
variable email is significant at the .05 level. These 
results generally agree with the observations 
above. The difference is that with the LIME 
model the multivariate impact of the predictors as 
explainers in the decision model is not available. 

Conclusion 
The importance of machine learning continues 
to grow and become more central to decision 
making in marketing analytics. With that 
increased reliance comes the importance of 
understanding how the complex algorithms 
do their work and why the results should be 
trusted. This paper has reviewed the leading 
approaches to explainability and the trends 
and ideas that these approaches are using. 
It presented a general characterization of a 
decision model, one that can be used to make 
optimal decisions in the domain of marketing 
analytics and one-to-one marketing and 
personalization of recommendations. The 
model relies on the results of other predictive 
models as well as business constraints 
and requirements. It illustrates the use of 
explainability models to gain insight into how 
a specific decision model is behaving using 
real-world data. There are many unanswered 

questions; of interest for further study would be 
to compare the efficacy and accuracy of different 
explainability models on decision models. For 
example, 

• suppose that one of the recursive
partitioning models were used in place of
the DM that is being explained, how
degraded would the resulting
performance be?

• what are appropriate measures of the
reliability of an explanation model?

• how well would an explanation model
work if the underlying decision model
was on a much larger scale than the
example?

Perhaps it shouldn’t be too surprising that the 
world has progressed to a point that in order 
to gain trust and confidence in the result of 
algorithms that have high predictive accuracy, 
models that explain models are needed. But it is 
an interesting development. 
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Abstract: Artificial intelligence (AI) offers a highly effective solution to classic problems in marketing later 
line therapies, particularly for niche patient populations and in increasingly competitive markets: how do 
companies reach the right healthcare providers (HCPs) at the right time to impact treatment decisions? 
What message should they deliver? How are these messages properly deployed to the field and monitored 
for ongoing performance? There is a compelling impetus for pharmaceutical companies to find ways to more 
accurately and efficiently time outreach activity to HCPs treating patients who are most suitable for a specific 
therapy. AI can leverage large scale datasets to find the right patient at the right time to achieve advanced 
predictive targeting of therapy escalation through timed prediction of disease progression. This paper focuses 
on methodological inputs for AI models that seek to predict these events in the therapy journey, including: 1) 
defining and building the dataset, 2) setting and understanding the window for predictive timing, and  
3) effectively assessing model performance prior to commercial deployment.

Keywords: Artificial Intelligence, Machine Learning, Predictive Analytics, Disease Progression, Treatment 
Journey, Precision Targeting

the right time in a patient’s disease progression 
to most efficiently operationalize outreach.  

Medical and prescription claims are most 
commonly used for HCP targeting due to 
patient coverage, cost, and the commercial 
applicability of linking a patient to a treating 
HCP. However, claims data can be noisy 
and complex, making predictions of disease 
progression (typically evidenced by therapy 
initiation or escalation) a difficult task. Artificial 
intelligence (AI) provides the technical 
foundation to effectively mitigate challenges 
associated with predictions of disease 
progression including: 

1.0 Introduction  
1.1 Predicting Disease Progression with 
Artificial Intelligence 
Treatment decisions such as new therapy 
initiations or therapy escalation in the event of 
disease progression are complex, multifaceted, 
and may occur over a narrow window of 
time. Effective messaging with a view towards 
impacting treatment decisions thus requires 
a highly targeted approach, particularly for 
products intended to treat niche patient 
populations or indicated for later line therapy. 
Increasingly, pharmaceutical companies face the 
challenge of not only reaching the appropriate 
health care provider (HCP), but more 
importantly, of delivering the right message at 
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methodologies critical to success in disease 
progression predictions and will speak to the 
future of AI applications in the predictive 
precision targeting space. 

2.0 Methodological Design for Timed 
Predictions with AI 
2.1 Defining Potential Predictors of 
Disease Progression 
AI algorithms ‘learn by example’ whereby 
a model is rewarded for finding patterns 
in patient medical data that distinguish a 
target patient from a large universe of non-
target patients. When applied to prediction, 
AI algorithms analyze data as a collection of 
predictors (or features) that may guide a model 
in its decision making. A first step in model 
development is defining the clinical features 
that may be used for model training. This 
process may be accomplished in two ways: 
1) through a hypothesis/knowledge-driven 
approach where domain experts manually 
curate potentially relevant clinical features and 
2) through an automated data-driven approach 
where features are algorithmically extracted 
from patient data without human interference. 
Knowledge-driven features ensure that domain 
knowledge is leveraged for feature identification 
whereas the data-driven approach provides the 
opportunity to identify previously unknown 
clinical factors that may prove indicative of 
disease progression or informative of potential 
therapy escalation. A hybrid of domain-driven and 
data-driven predictors further ensures that the 
potential for insights from the data is maximized.  
 
2.2 Data Transformation for AI Predictions 
Conventional Approach 
The well-designed use of patient medical data 
is essential to the success of AI for disease 
progression prediction. A conventional 
approach for data extraction in predicting 
progression is to take a single snapshot of 
patient medical history preceding an outcome 

•	 Medical history data in the form of open 
claims, typically used for commercial 
targeting endeavors, can be noisy and 
fragmented – AI can handle such data 
and help to maximize the value of 
targeting operations through deployment 
at scale and without requiring highly 
specific biomarkers that are indicative of 
disease progression. 

•	 Therapy decisions are often driven by 
complex and interrelated factors in a 
patient’s history as well as by their HCP’s 
unique preferences – AI can address both 
patient and HCP characteristics and navigate 
the complex clinical factors that influence 
progression to the next line of therapy.

•	 Data used for predictions is likely to have a 
lag (the time between the actual data event 
and collection/availability) – AI models 
can account for this lag by predicting an 
event in advance (e.g. 30 days prior to the 
target event) providing the necessary time 
for salesforce mobilization.

•	 Identification of target patients may 
focus on a niche group suitable for a 
specific medication – AI can selectively 
mine data to focus on a broad patient 
population or a narrow, highly specific 
subpopulation when determining who is 
most likely to benefit from a medication.

 
AI is a well-suited tool to identify patients who 
may experience disease progression and enables 
the precision needed for targeted outreach. Due 
to our growing ability to process ever larger and 
more complex data sources, AI models can now 
use the presence and interplay of clinical events 
to predict which patients are likely to progress as 
well as use the timing of these events to inform 
when progression may occur. The ability to 
integrate the timing of events also allows 
insights from AI to be proactive rather than 
reactive, resulting in targeted and timely 
interventions. This paper will discuss key 
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allows the model to learn about this timeframe 
in the data. There is thus no flexibility to view a 
patient across multiple points in their journey. 
In addition, the dependence on an event date 
of interest to guide data extraction may lead to 
sampling biases when target events occur with 
greater or lesser frequency due to temporal 
factors like seasonality or variations in data 
coverage. As a result, models trained using this 
single snapshot strategy may generalize poorly, 
meaning they will not perform well when 
deployed commercially on new, previously 
unseen patient data. 
 
Advanced Cross-Sectional Approach 
A promising alternative to the single-snapshot 
approach seeks to overcome the above 
challenges while leveraging the full breadth of 
patient medical data over time. This approach 
sub-divides patient histories into a series of 
time-bound rolling snapshots defined as cross-
sections (see Figure 1 and key definitions in 
Table 1). Each cross-section includes a defined 
lookback window usually on the order of 
one or two years from which patient medical 
history is extracted to create features for model 
training, as well as a narrow forward-looking 

of interest, e.g. patient history prior to the 
initiation of a new therapy. This set of data is 
then used for model development. Within the 
dataset itself, two groups of patients are identified: 
a positive group that experiences this event of 
interest (disease progression) and a negative 
group that does not experience the event.  
 
The strategy of using a single snapshot presents 
several challenges. For one, an outcome of 
interest may occur multiple times over a 
patient’s medical journey, such as a patient who 
initiates multiple biologics for the treatment of 
rheumatoid arthritis over the course of a single 
year due to adverse reactions or poor treatment 
response. This situation raises the question of 
which event date to use as an anchor point for 
prediction of progression. Additionally, it can be 
unclear as to which snapshot of medical history 
is the most appropriate for a negative patient, as 
they do not have an event of interest on which 
to anchor, in contrast to positive patients that 
experience defined progression.  
 
This conventional approach consolidates patient 
histories into a single longitudinal snapshot 
at a single point in time, and therefore only 

Figure 1: Multiple Snapshot Cross-Sectional Approach to Data Extraction

The cross-sectional approach defines patients as positive or negative based on multiple snapshots of medical history. Thus, 
a patient can be negative (absence of disease progression) in earlier snapshots and transition to positive (experience 
disease progression event) in a later snapshot. CS = cross-section; + indicates that the disease progression event has 
occurred for the patient, designating them as positive in the cross-section; - indicates that the patient has not experienced 
the disease progression event and is thus negative in the cross-section. Source: IQVIA methodology. 
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products, products that have recently launched, 
or products with narrowly defined market 
segments, since the number of patient instances 
used for model training scales in relative 
proportion to the number of cross-sections. 
In other words, patients are used more than 
once for model training, amplifying the signal 
obtained from each individual. 

There are a number of benefits of this multi-
snapshot approach to patient data extraction 
related to customization that best suits a given 
clinical scenario and commercial application: 

• The prediction window can be designed
such that patient predictions are valid for
a given period of time (e.g. a 3-month
window of opportunity).

• The “offset” period prior to the prediction
window can be incorporated to accommodate 
lags in data collection, data processing, or
the mobilization of clinical or commercial 
resources (e.g. a 1-month time period
prior to operationalizing AI predictions
in the field).

• This method provides the opportunity to
train on multiple cross-sections, allowing
for better monitoring of indicators of

prediction window to detect an outcome of 
interest (disease progression). This outcome 
window defines the time period over which 
disease progression is predicted. For example, if 
the window is three months the model will be 
trained to predict patients who will transition 
over a three-month time horizon. Successive 
cross-sections are shifted by a given interval 
(e.g. monthly increments) to form a final dataset 
containing multiple cross-sections of data defined 
by iterative timeframes of medical history.  

A key advantage of this strategy is that it 
captures multiple snapshots of the patient 
journey wherein patients are labeled according 
to their current therapeutic status (within 
the specific snapshot of time), such as drug 
initiation versus no initiation. Within this 
definition, a patient may be seen by the 
model as a negative patient during an earlier 
snapshot of data, and subsequently seen as a 
positive in a later snapshot once the patient 
has initiated the medication of interest. This 
allows AI algorithms to learn from more varied 
and comprehensive representations of patient 
history regarding disease progression. It also 
helps overcome challenges arising from small 
sample sizes, which is often the case for niche 

Concept Definition
Lookback Medical history used to train the AI model

Outcome Clinical event defining disease progression, often the initiation or escalation of therapy, 
that identifies a patient as positive

Outcome Window Time period over which progression is predicted to occur 

Offset
Time period prior to the outcome window that can be incorporated to accommodate 
lags in data collection and operational needs (i.e. the model can predict an event X 
amount of time in advance, where X is defined by the offset)

Cross Section Snapshot of patient medical history defined over a set time period

Precision

Proportion of patients correctly predicted with disease progression, defined as:

True Positive Patients

True Positive + False Positive

Table 1. Key Definitions Utilized
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horizons. Finding the optimal outcome 
window may require some 
experimentation and adaptation based 
on a given therapeutic area and 
corresponding market dynamics. 

3.0 Methodological Design for Model 
Validation and Performance Assessment 
Deploying AI using longitudinal patient data is 
most beneficial when frameworks for commercial 
implementation are carefully considered in 
the evaluation of model performance. Proper 
assessment of model performance prior to 
deployment is essential to understanding model 
utility in a real-world setting. Below, two main 
elements of model evaluation prior to deployment 
are discussed. The first assesses the implications 
of an extended outcome window on model 
performance and the second introduces precision 
measures based on potential target HCPs. A 
process for AI-driven predictive messaging in 
real-world deployment is also outlined.  

3.1 Case Study Data and Modeling Overview 
A recent example of a model developed in 
the autoimmune space illustrates the cross-
sectional approach. This model was trained to 
predict disease progression among patients with 
an autoimmune disorder using an open claims 
dataset. The patient sample included ~25,000 
patients who switched to a later line medication 
(the positive cohort) and ~340,000 patients 
with a diagnosis of the disorder but no evidence 
of switch from a first to later line therapy 
(the negative cohort). Features were derived 
from both a data-driven approach (based on 
claim prevalence in the positive and negative 
populations) and a knowledge-driven approach 
(claims were selected under the guidance of 
domain experts). Features were engineered as 
the recency (first and last date) and frequency 
of claims during each cross-section. An 
Extreme Gradient Boosting model (XGBoost) 
was trained to predict disease progression. 

model drift (reduced performance due to 
market or other changes in the data), and 
thus for mitigation of temporal biases in 
patient sampling due to seasonality, 
fluctuations in data coverage over time, 
or shifts in market dynamics such as a 
new therapy launch or changing 
treatment pathways. 

This approach to patient data extraction 
also enables model validation strategies that 
evaluate model performance exclusively on 
“future” data. Specifically, a model can be 
trained on the bulk of historical medical history 
snapshots and validated only on the most 
recent snapshots to produce representative 
indicators of model performance after real-
world commercial deployment. Within this 
framework, the model is essentially being 
evaluated on data it has not seen from a future 
time period, as it is trained exclusively on 
earlier snapshots of data. 

Despite its many advantages, one should 
exercise care when using this multi-snapshot 
strategy for several reasons:

• First, as always when using longitudinal
data steps must be taken to prevent
instances of “data leakage” (i.e. scenarios
where the model is mistakenly exposed
to future patient data during training
since the model will not have access to
this patient information at deployment).

• Second, as this approach takes full
advantage of historical data one must be
vigilant to shifting market dynamics that
could cause the model to overfit to 
obsolete market trends and so should 
select the study time period appropriately. 

• Finally, choosing the duration of a
snapshot outcome window requires
balancing the needs of a desired model
use case with the ability to accurately
predict over narrower or broader time
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consequently the precision of this model was 
lower than desired (15.2% precision for the 
top 2,500 patients predicted by the model). 
However, assessing performance this way 
underestimates the usefulness of this model 
because a substantial percentage of false positive 
patients within the constrained time window 
ultimately experience disease progression when 
the outcome window is relaxed to six months 
beyond the time of prediction (29.3% precision 
for the same set of 2,500 patients – see Figure 
2). This precision value is only truly meaningful 
when compared to a baseline of performance in 
the absence of the AI model. In the case of the 
model defined here, AI-driven precision was 
four to five times better than selecting patients 
at random for disease progression, a substantial 
increase over baseline.  
 
3.3 Measuring Model Precision at the 
HCP-Level 
Model precision is often measured at the patient 
level as outlined above, where the performance 
is quantified by how many patients the model 
identifies correctly. However, for commercial 
targeting purposes, it is not just the effective 
prediction of patient events that is important 
but also of HCP-related events. Or, in other 

Hyperparameter tuning and cross-validation 
was performed to maximize model robustness 
and predictive performance.  
 
3.2 Model Performance Measurement 
with an Extended Outcome Window 
The outcome window defines the period of 
time over which the model predicts a disease 
progression event of interest. AI models may be 
trained with narrow outcome windows in order 
to find patients for whom disease progression 
is imminent. This approach is reasonable as 
patient history close to an event of interest often 
proves predictive, such as a rare procedure 
that is frequently performed shortly before 
the initiation of a new medication. However, 
a narrow outcome window to predict a patient 
transition is not always ideal as an overly 
narrow window may rely on a signal to noise 
ratio that does not exist in reality. 
 
Our autoimmune case study illustrates this 
idea. The model was initially trained to predict 
disease progression within a narrow outcome 
window of two months. For this clinical 
population there proved to be insufficient 
signal in patient medical history to effectively 
make such high-resolution predictions and 

Figure 2: Model Precision with an Extended Outcome Window

Model precision in identifying patients with disease progression with an autoimmune condition is increased 
approximately three-fold (~10% to ~30%) as the outcome window is extended. 2
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that the set of HCPs identified by AI would 
be targeted with 37% precision, meaning that 
roughly two out of five targeted HCPs would be 
expected to act on the disease progression and 
transition a predicted patient in a real-world 
setting within one month of the prediction.  
 
3.4 Leveraging AI for Predictive 
Messaging 
Once individual predictive features have been 
identified, it is critical to ensure these insights 
are both interpretable and actionable. Knowing 
that treatment with six individual therapies 
is predictive of disease progression may be 
informative; however, this level of granularity 
may not be valuable when making messaging 
decisions. A view of messaging that maintains 
the insights but simplifies the content can 
be produced by collecting individual related 
predictors into broad domains (see Table 2). 
For example, while the model may identify 
a recent rheumatologist visit, duration of 
a specific treatment, and recent visit for a 
comorbid disease as important individual 
features in predicting disease progression, it 

words, predicting if an HCP will transition a 
patient to a new medication is just as important 
if not more important towards the validation 
of a model’s performance and applicability in a 
real-world commercial setting.  
 
Looking back at the same model developed 
for disease progression predictions in the 
autoimmune space mentioned above, the 
measurement of HCP-level precision is 
constructed by defining the number of predicted 
patients that are linked to a potential target 
HCP and identifying HCPs that recognize 
disease progression in one or more of these 
predicted patients and transition them to 
a medication of interest. Constructed this 
way, an HCP-level performance assessment 
demonstrates that the AI model can achieve 
high levels of precision (see Figure 3). For 
this specific model, the view of HCP-precision 
defines the proportion of potential target 
HCPs that are expected to actually transition 
a predicted patient to a specific biologic (new 
treatment) in a predicted time window. For 
commercial application, one could consider 

Figure 3: Model Precision Measured at the HCP-Level 

HCP-level precision demonstrates the efficacy of the model in identifying HCPs who see patients with a disease 
progression outcome of interest, which is defined here as a transition from an initial treatment to later line therapy with a 
biologic in the autoimmune space. 
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subsequent rounds of predictions as patients 
are newly identified as positive (e.g. undergo 
disease progression after model deployment). 
For the second option, an additional model 
may be developed to track previously predicted 
positive patients and their corresponding HCPs 
to understand how many predicted patients 
ultimately experience disease progression.  
 
3.6 On-going Optimization of Messaging 
The refresh approaches above provide the 
opportunity to tune both the number of 
aggregated messages as well as the granularity 
of messaging based on modelling results and the 
commercial or clinical application. For example, a 
model that derives the bulk of its predictive power 
from a small subset of features may only need 
two or three aggregate categories to effectively 
summarize outputs for HCP outreach. On the 
other hand, a salesforce large enough to call on 
a broad range of HCPs or to maintain frequent 
contact with a select group of HCPs may require 
increased detail such as the types of drugs HCPs 
prescribe to relevant patients at either the class or 
individual product level, the number of patients 
seen by the HCP who have certain symptoms or 
comorbidities, or the types of other specialists 
seen by patients tied to that HCP.

may be more useful to craft a single message 
related to all three labeled as “disease activity.” 
These messages can then be presented to target 
HCPs with predicted patients that fit a certain 
profile of disease progression. 
 
3.5 On-going Algorithm Re-optimization 
While a model is trained using data collected 
over a limited historical period, it may benefit 
from re-optimization after real-world deployment. 
Through this process, an established predictive 
model may be retrained with the addition of 
new and more recent data, including additional 
positive samples as more patients experience 
disease progression and transition to later line 
medications. With on-going optimization, the 
model can also account for potential market 
shifts to ensure that predictive performance 
remains stable during deployment. 
 
Two main options can be implemented for 
ongoing model re-optimization, including:

1.	 Refreshing with newer data (including 
updated positive patients)

2.	 Refreshing with data collected in the field 
(i.e. call and response data)

 
For the first option, on a routine basis the 
model can be updated with additional data that 
is collected between the initial predictions and 

Domain Potential Predictors Included
Disease Activity •	 Recency of rheumatology interaction

•	 Recency of visit for comorbid disease

•	 Duration of maintenance therapy 
Reduced the Risk of Event •	 Rheumatologist visit frequency

•	 Recency of high or mid-dose steroids
Reduced Steroid Dose •	 Proportion of days covered with steroid 

treatment in most recent six months
Opportunity for brand use as an earlier-line therapy •	 Naïve to specific treatment

Table 2: Predictive Messaging Informed by an AI Model 

Source: Illustrative examples driven by studies in the autoimmune space. 
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Certain challenges with this technique do exist, 
such as:

•	 Rapid expansion of the amount of data 
used to train the model and thus increasing 
computational power required for analyses 
(expansion occurs because a patient’s 
medical history can be utilized at multiple 
times, amplifying the amount of times 
this patient is present in the dataset)

•	 In less prevalent disease states or when 
targeting a niche patient population, the 
positive sample in an individual cross 
section can be low, rendering it more 
challenging for the model to identify a 
positive signal to differentiate patients of 
interest. 

Conclusion 
Predicting disease progression over a pre-
defined time window can be quite powerful 
towards informing pharma commercial 
strategies. These predictions are not an easy 
task, as progression is informed by many 
clinical events, treatment journeys are complex, 
and HCP preference can play an important 
role in therapy changes. AI can be successful 
in not simply predicting these events but also 
in informing messaging specific to disease 
progression. However, the effective use of AI is 
not easy and requires clinical, methodological, 
and AI expertise. In addition, enhancement 
of the technique is possible, and upcoming 
improvements include comparing different 
algorithms, such as neural networks (e.g. deep 
learning) relative to prevailing tree-based 
algorithms (e.g. XGboost) as well as experiments 
on the types of clinical features that may be 
engineered to support predictive modeling. 

The messaging can also be adjusted over 
time either based on feedback from the field 
force or the results of a newly trained model 
(refreshed based on re-optimization element 
1) mentioned above). For example, if a certain 
treatment is traditionally used for alleviation 
of symptoms associated with a disorder, it may 
initially be highly predictive of disease. But 
over time, newer treatments may become more 
prominent, and as such the older treatment 
may no longer be as relevant or predictive. In 
this case, we would expect this feature to be 
de-emphasized in a re-optimized model and 
the messaging to be adjusted accordingly. This 
approach specifically allows for adjustment of 
HCP messaging strategy to reflect changes in 
features driving model predictions. 
 
4.0 Business Implications of this 
Methodology 
Overall, there are several key benefits to the 
approach outlined above and its translation 
from model development to real-world 
application. These benefits include: 

•	 The model is trained on a more 
representative dataset for a better 
estimate of performance. 

•	 This method provides a better ground 
truth for actual model performance once 
applied in a commercial or clinical 
setting.

•	 The model is well suited for iterative, 
ongoing refreshes as it is designed on a 
rolling set of data that is set up to be 
optimized over time.

•	 A model can be trained on older data, 
and then tested on a “future” dataset as 
the cross sections are rolling in time and 
can be split temporally.
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suitable for treatment escalation. Our 
efforts help improve retrospective clinical 
studies, under-diagnosis of rare diseases, 
personalised treatment response profiles, 
disease progression predictions, and clinical 
decision-support tools. For questions or more 
information regarding the information in this 
article, please contact Stephanie.Roy@IQVIA.
com or Nadejda.Leavitt@IQVIA.com. 
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undiagnosed patients or identifying patients 
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ARTICLE 8 
 
A Method for Physician Segmentation and Brand 
Activation Prediction Using Claims Data 

Mert Sahin, Chief Marketing Officer, Imaging, GE Healthcare and Ashish Patel, Co-founder, 
CareSet Systems

Abstract: Pharmaceutical manufacturers use several key performance indicators (KPIs) to assess the 
performance of their products. One such KPI, which has become the standard for assessing prescription write-
and-fill events for pharmaceutical benefits, is total new prescriptions (NRx). It uses real-time data and has 
become a part of established data feeds from companies that provide weekly physician-level NRx information 
to their clients (e.g., brand, regional sales, and field teams of pharmaceutical manufacturers). However, the 
NRx KPI is limited in measuring the performance of intravenous, subcutaneous, injectable, and other biologic 
drugs, which require final-action administrative claims instead of retail prescriptions. In this article, a new 
Patel-Sahin Proxy (PSP) score is presented to approximate the NRx KPI for biologic drugs by using procedure 
and diagnosis codes found in administrative claims. The PSP score was applied to the Centers for Medicare 
and Medicaid Services (CMS) Part B claims data to produce prescriber profiles and make sales predictions. 
The results showed that the PSP score produced a more actionable representation of provider segments and 
made better sales predictions compared to the NRx KPI.

Keywords: Medicare, Claims Data, Commercial Analytics, Brand Marketing, Utilization, Activation, 
Biologics, Buy and Bill, Part B, Physician Segmentation, NPI, HCP

do not necessarily rely on written prescriptions. 
In those cases, manufacturers have to be 
innovative in their methods for measuring 
success. One such way to do that is to more 
efficiently explore the vast amount of new 
physician-level data and technology.4 

GE Healthcare is one pharmaceutical 
manufacturer to have contextualized this 
challenge. Among a diverse offering of 
healthcare technologies and services, GE 
produces several injectable contrasting products 
used in medical imaging to diagnose several 
cardiovascular and neurological degenerative 
disorders. These injectables are “buy and bill” and 
collecting data on products obtained through a 
hospital or specialty pharmacy is difficult. The 
concept of “buy and bill” is when an institution, 
hospital, or medical group purchases and 
warehouses units of medication, and bills for each 
unit or dose after it is administered to a patient.7

 

Introduction 
The marketing methods used by pharmaceutical 
manufacturers to select physicians have shifted 
from the use of quarterly prescription and 
claims data to the use of real-time data from 
large data providers.1 To track the number of 
new patients a physician has educated and 
activated with a specific brand or treatment, 
the most relevant metric is the number of new 
prescriptions per physician, also known as total 
new prescriptions (NRx).2  Marketing and sales 
teams may receive weekly updates on brand 
activation NRx. The teams can also pay to 
obtain real-time notifications once a physician 
writes a prescription. These new written 
prescriptions (NWRx)3 enable pharmaceutical 
manufacturers to reliably measure and predict 
the success of their products.

However, most biologic drugs, along with 
equipment used for diagnosis and treatment, 
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accepting Medicare, the largest payer in the 
US, was visible. Additionally, patient identity 
and privacy were protected by following the 
CMS cell size suppression policy, which sets 
minimum thresholds of 11 for the display of any 
CMS data (e.g. admissions, discharges, patients, 
services, etc).5 

Several datasets were used to find and identify 
physicians. The evaluation relied upon the 
innovative use of healthcare administrative 
claims (Medicare fee-for-service (FFS) Part B 
Research Identifiable Files (RIF) claims with a 
100% population sample, which contains the 
full FFS census). The observation period was 
24 months. Physicians were identified by the 
National Provider Identifier (NPI). NPI is a 
Health Insurance Portability and Accountability 
Act (HIPAA) Administrative Simplification 
Standard used for administrative and financial 
transactions. Nurse practitioners, physician 
assistants and pharmacists that may administer 
treatments are also identifiable by NPI. In 
addition to identifying physicians, the NPI also 
identifies hospitals, organizations and group 
practices.  The number of established or new 
patients added to the practice, and the number 
of diagnoses related to the proposed product 
was calculated based on each physician NPI. 

In contrast to Medicare Part D, which covers 
pharmaceutical benefits for typically oral 
medications obtained through retail pharmacy, 
Medicare Part B covers Institutional Outpatient 
and Carrier Outpatient setting medical benefits, 
meaning that all claims in this category 
reimburse for procedures, such as evaluations, 
labs, radiology, and other same-day services, 
and prescriptions, such as those medications 
that are injectable, intravenous, and infused. 
When the outpatient benefit is administered 
in an institution or hospital setting, it is billed 
using a UB-04/CMS-1450 claim form and is 
found in the Institutional Outpatient claims file. 
All non-institutional claims, such as those from 

In this article, a new method of physician 
segmentation and brand activation success 
prediction is reported. The initial intent was 
to estimate brand utilization by a physician 
over the next two years. The method was 
created, executed, and compared against the 
current method of reporting by two cooperating 
teams: (1) marketing and sales branches of 
GE Healthcare, and (2) the data scientists and 
engineers of a leading Medicare data company. 
The new method used quarterly claims data from 
Medicare Part B. The qualities and success of the 
new model were compared to the performance 
of the current method to answer the question: 
Can product utilization be accurately predicted 
using medical benefit claims? 

Methodology 
GE Healthcare is launching a range of new 
biologic drugs and is interested in developing 
innovative methods to increase access 
and adoption in the adult population. The 
partner organization followed a strategy built 
on Medicare claims used to help payors, 
accountable care organizations (ACOs), and 
hospital systems to develop robust physician 
networks. Regional physician recruitment 
teams helped develop several models to identify 
and prioritize physician-based estimates of 
growth, potential, risk appetite, and network 
impact. When combined, these parameters 
could predict the arrival of newly diagnosed and 
treatment-naive patients. 

Focusing on networks and physician utilization, 
analysis of Medicare data can identify care 
continuity gaps with therapeutic area-specific 
perspectives highlighting the patient’s journey 
through the healthcare system. Leveraging 
that approach, GE received the relevant 
expertise in Medicare Part B claims data, and 
were empowered to collaborate within their 
teams. The Medicare data provided the total 
visibility of claims, with no missing markets, 
providers, or organizations since any provider 
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on identifying physicians who are growing 
their practices, recording new indications, 
managing newly diagnosed patients, and, 
therefore, thought to be open to pharmaceutical 
innovations. 

Most biologic drugs are identified with an 
HCPCS, common procedure terminology (CPT), 
or national drug code (NDC) on the claim. 
These claims allow for objective utilization 
measurements of drugs and related products. 
It also allows for subsequent identification 
of physicians who administer medications 
and procedures, medical billing groups, and 
hospital systems. Diseases are classified in 
Medicare claims using the 10th revision of the 
International Classification of Diseases and 
Related Health Problems, Tenth Revision, 
Clinical Modification (ICD-10-CM) codes. These 
ICD-10 codes are embedded in claims and can 
be used to count the number of unique patients 
diagnosed or managed by physician NPI and by 
organization NPI. Based on this information, 
physicians can be segmented to identify those 
who would find greater utility from novel 
treatments and diagnostic procedures to 
manage and evaluate patients. The PSP model 
included a set of ICD-10 codes related to all the 
diseases targeted by GE’s diagnostic offerings.

GE’s biologic assists in the early diagnosis of a 
degenerative disorder, which can dramatically 
improve outcomes. Finding physicians 
treating the symptoms of the disease allows 
for faster diagnosis and efficient marketing 
efforts, allowing more relevant product-related 
information to be made available to these 
physicians. Based on this objective, the model 
was defined to predict the number of patients a 
physician (or account) may have in the future 
by combining factors like indicated populations, 
product utilization, and a growth factor 
measured from E&M codes.

 

private practices and free-standing settings are 
billed in Carrier Outpatient claims using a CMS-
1500 claim form.6

CMS provides qualified researchers with 
quarterly RIF data that includes procedure 
and diagnosis codes, place of service, and 
payment details, including patient out-of-
pocket, third party payment amount, Medicare 
reimbursement, and provider charge data.

Healthcare Common Procedure Coding System 
(HCPCS) procedure codes (Px) appearing in 
Part B claims describe the supplies and services 
a physician provided; as such, the descriptions 
provide insight into the patient experience in 
that physician’s office. The most common Px 
reimburse physician office visits for patient 
evaluation and management (E&M). Most 
importantly, there is a code-level distinction 
that describes if the patient is “new” to the 
physician or if the patient has an “established” 
relationship with the physician. For example, 
99201 procedure code is used for a “new” 
patient and 99211 for an “established patient”. 
Therefore, the evaluation of the procedure 
codes across a physician’s Part B claims allows 
the team to calculate the percentage of new 
patients.  This is done by dividing the number 
of new patients by the total number of patients 
and multiplying the figure by 100. This practice 
growth measurement is called the “% of New 
Patients” for the physician and is a critical 
component of the model. 

From the pharmaceutical manufacturers’ 
experience, if a practice is no longer billing 
office visits for new patients and using only 
the established patient E&M codes, then that 
practice may be likely to close over time, or 
they may not be open to treating new patients. 
There is an assumption that those physicians 
are less likely to adopt new treatment tools 
and are unlikely to be ideal recipients of 
marketing efforts. The proposed model focused 
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on the y-axis) and used the PSP score to 
group physicians as high- or medium-growth 
physician practices (plotted on the x-axis). After 
that, marketing teams were able to efficiently 
target providers who were more likely to be 
receptive to new products. 

Results 
With previous segmentation efforts, the 
NRx model identified approximately 8,000 
physicians, while the PSP model initially found 
approximately 80,000 potential providers with 
positive PSP scores. The goal was to interact 
with 6,000 physicians by optimizing the 
marketing field force resources GE had at hand, 
so a minimum PSP score threshold of 20 was 
chosen. Physicians with a PSP score of 20 or 
more were chosen for the segmentation effort 
and the rest were set aside for this exercise 
(Table 1) to revisit in the future.  With the 
threshold filter applied, the model predicted 
approximately 5,600 physicians would have 
20 more treatment/diagnostic naive patients 

The intent was to estimate brand utilization by 
a physician over the upcoming two years. First, 
we determined a physician’s total “Number of 
Indicated Patients” (n) by counting the unique 
patients who had claims with ICD-10 codes 
related to a specific product in question. Then, 
we counted the occurrence of 99201-related 
CPT codes to represent “new” patients and 
the occurrence of 99211-related CPT codes 
to represent “established” patients. The ratio 
of new vs established patients multiplied by 
100 provides the “% New Patients” (c). The 
PSP score was derived by multiplying % New 
Patients (c) and Number of Indicated Patients 
(n), which was used to predict brand activation 
and future utilization. PSP score is defined in 
the formula in Figure 1.                 

In order to segment the qualified physicians 
for marketing action, an easily interpreted 
model was used. Figure 2 is a 2x2 segment 
map that divides physicians based on whether 
they already utilized GE’s products (plotted 

Figure 2: Segmentation Table with Physician Allocations Based on a Comparison of 
Product Use and PSP Scores ≥ 20

Figure 1: PSP Score Formula 

Patel—Sahin Proxy Score = Number of Indicated Patients (n) x % New Patients (c)                 

Indication 1  U  Indication 2
New Patients

All Patients Seen
X  100
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Discussion 
This method contrasts the NRx method in 
several ways. First, the older method assessed 
prescriptions as an indication of active disease 
management, whereas the PSP score relied 
on the presence of E&M billing codes for 
indicated patients to accomplish the same. The 
older method exposed how often a physician 
activates a treatment-naive patient, whereas 
the PSP score predicted the number of patients 
with similar indications from the physician’s 
entire patient panel. The superiority of the PSP 
score was based on the physician coverage of 
Medicare, the fit of Part B claims for biologics 
utilization, and the positive changes in the rate 
of sales associated with switching from the old 
NRx model to the new PSP model. 

The formula (Figure 1) provides a proxy based 
on Medicare data that is akin to, but not the 
same as, NRx data from large data providers. 
While the PSP score combines the number 
of indicated patients the physician treats and 
practice growth rate, the novelty stems from the 
growth factor (c), which can be added to any 
measurement, including NRx, to create a new 
prediction. To that end, c is referred to as the 
Medicare coefficient and can be “subscripted” 
to deliver physician and practice-level growth 
rates for subsets of patients (i.e., c1, c2, c3, etc.). 

This new physician segmentation protocol was 
rolled out across the portfolio of products in 
GE’s biologics business. The resulting model 
helped in understanding new market dynamics, 
procedure flow, and emerging key opinion 
leaders (KOLs). PSP scores can be updated 

over the next two years. Each of these 5,600 
physicians was considered to have the greatest 
fit and highest probability of response because 
they met two critical criteria: (1) they treated 
the diseases of interest, and (2) showed high 
growth rates of their practice. Furthermore, 
13% of physicians displayed high growth rates, 
with PSP scores of 50+, and did not utilize GE’s 
products, representing immediate opportunities 
to increase awareness and access. 

There were immediate results with the PSP 
model at the center of the marketing effort 
design. Figure 2 illustrates the distribution 
of 5,600 physicians into segments for next-step 
actions. Pending the segment under which a 
physician falls, they will have an individualized 
value proposition. For example, approximately 12% 
of physicians were found with high growth and no 
evidence of GE product utilization.  This audience 
represented a huge opportunity for personal 
and non-personal communication activity. 

The GE marketing team received new PSP data 
in the fall and began immediate communications 
with each physician with segment-specific and 
customized messaging. Within a few quarters, 
there was a noticeable 60%-70% increase in 
product utilization and revenue. The following 
four quarters showed 100% revenue growth 
overall. From GE’s perspective, this increase was 
attributable to the ability to reach the correct 
audience for prescribing therapeutics and 
referring patients for diagnostics.

Table 1

Model NRx PSP no Filter PSP Filtered
Filter All providers  

(no filter)
All providers  

(no filter)
Providers with PSP 

scores ≥ 20

Grand Total ~8,000 ~80,000 ~5,600
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Conclusion 
This manuscript discusses a new KPI used by 
brand marketing teams to assess where the 
market is going, rather than its current state. 
A novel Patel-Sahin Proxy (PSP) Score was 
derived using Medicare Part B claims data (with 
a quarterly lag) to produce prescriber profiles 
and make sales predictions to help marketing 
professionals allocate resources. The new 
method showed a 100% increase in sales for 
a brand compared to the older method using 
NRx data from prescription claims vendors. The 
proposed PSP scoring approach was reliable, 
easy to communicate, could easily track results 
quarterly, and helped the pharmaceutical 
marketing teams to predict new opportunities 
with maximum efficiency.

 

quarterly allowing consistent recalibration of 
marketing resources based on each therapeutic 
area’s quarter and annual trends. Additionally, 
it is possible to identify which procedures are 
increasing or decreasing, and which physicians 
are shifting treatments and diagnostics away 
from the inpatient setting towards the institution 
outpatient and ambulatory clinic setting. 

The PSP score enabled the ability to visualize 
KOLs through the lens of utilization and 
practice growth. It was possible to identify 
impactful physicians in their regions and to 
facilitate high-quality discussions between 
them. These physicians can partner with 
pharmaceutical manufacturers to highlight the 
importance of the product, diagnosis, and the 
impact on patient’s lives. 
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